
NASA-CR-205078

i

L_

Supported by
National Aeronautics and Space Administration

Graduate Student Researchers Grant NGT4-52401

KNOWLEDGE-BASED
AIRCRAFT AUTOMATION

MANAGERS GUIDE ON THE USE OF ARTIFICIAL
INTELLIGENCE FOR AIRCRAFT AUTOMATION

and
VERIFICATION AND VALIDATION APPROACH FOR

A NEURAL-BASED FLIGHT CONTROLLER

Ron Broderick

12 May 1997

Engineering and Production Management
Loyola Marymount University

NGT4-52401

Executive Summary

The ultimate goal of this report was to integrate the powerful tools of artificial
intelligence into the traditional process of software development. To maintain the US
aerospace competitive advantage, traditional aerospace and software engineers need
to more easily incorporate the technology of artificial intelligence into the advanced
aerospace systems being designed today. The future goal was to transition artificial
intelligence from an emerging technology to a standard technology that is considered
early in the life cycle process to develop state-of-the-art aircraft automation systems.

E

t-.

I " - • E" • :, i,_._._ ..: matrix that
)us artificial

guidance to
/elopment of
ally evaluate

NGT4-52401

Acknowledgments

This study of Knowledge-Based Aircraft Automation was supported by a NASA Dryden
Graduate Student Researchers Grant NGT4-52401 to Loyola Marymount University,
Engineering and Production Management Program, Department of Mechanical
Engineering, College of Science and Engineering.

I am grateful to the faculty of Loyola Marymount University, who encouraged me to
pursue the grant, and who shared so generously of themselves, their knowledge, and
enthusiasm, for completely this study especially:

Dr. Bohdan Oppenheim, Department of Mechanical Engineering
Dr. Stephanie August, Department of Electrical Engineering &Computer Science
Dr. Mel Mendelson, Department of Engineering & Production Management

I am thankful to my wife, Andreina, whose love, support, encouragement and airplane
cookies kept me afloat.

I am grateful to my close friend, Leonard Cash, for his wisdom, humor, clarity and
editorial guidance.

I am thankful to Dr. Birute Vileisis from the Loyola Academic Grants Office for her
administrative assistance.

I am appreciative to Roberta Rubin from the Loyola Learning Center for her keen eye in
editing and for her continuous encourage.

I am grateful to my NASA technical sponsor Mr. Leonard Voelker, from Dryden Flight
Research Center for his encouragement, for the meeting he set-up for my presentation
and for allowing me to experience some of the exciting engineering taking place at
Dryden. I am grateful to Dr. K. Gupta, for his generous managerial support. I am
grateful to Mr. John Bozworth for setting up my second presentation.

I am grateful to Dr. Charles Jorgensen from NASA Ames Research Center for allowing
me to visit his Intelligent Flight Control Simulation Lab. and for the assistance in writing
the paper titled Verification and Validation Approach for a Neural-based Flight
Controller"to be presented at the Artificial Neural Network in Engineering Conference
at St. Louis, Missouri on November 9-12, 1997.

Disk 000008 i i
File: liflwolnasalfin3.doc

NGT4-52401

Acknowledgments
Table of Contents

Table of Figures
Executive Summary

Table of Contents

ii
°°°

III

V

vi

1.0 INTRODUCTION

¢

2.0 AI METHODS MATRIX VS AIRCRAFT APPLICATIONS 3

2.1 The Matrix
2.1.1 Matrix Columns: A1 Methods Used In Aircraft Automation

2.1.2 Matrix Rows: Aircraft Automation Applications Conductive To AI

2.2 Artificial Intelligence Methods •

2.2.1 Logical Methods

2.2.2. Object Representation-based Methods

2.2.3 Distributed Methods

2.2.4 Uncertainty Management Methods

2.2.5 Temporal Methods

2.2.6 Neurocompnting

7
I0

15
19
2O
23
24

2.3 Aircraft Automation Ai)plications
2.3.1 Pilot-Vehicle Interface

2.3.2 System Status/Diagnosis
2.3.3 Situation Assessment

2.3.4 Automatic Flight Planning
2.3.5 Aircraft Flight Control

27

27

35

36

37

38

3.0 VERIFICATION AND VALIDATION APPROACH FOR A NEURAL-BASED

FLIGHT CONTROLLER 40

3.1 Background
3.1.1 A Simple Neural Network
3.1.2 Control Systems
3.1.3 Direct Adaptive/Learning Flight Controller
3.1.4 Direct Adaptive Tracking Control Architecture
3.1.5 Neural-based F-15 Adaptive Flight Controller

4O
41
42
42
44
45

3.2 Comparing Conventional Software and Neural Network Paradigms

3.2.1 Concepts and Definitions

3.2.2 Activities

3.2.3 Verification and Validation During the Software Acquisition Life Cycle

3.2.4 Independent Verification and Validation (IV&V)

3.2.5 Tools and Techniques

46

46

47

48

5O

5O

3.3 Verification and Validation Program for the Neural-based F-15 Adaptive Flight Controller 53

3.3.1 V & V During the Software Acquisition Life Cycle 53

Disk 000008 iii
File: lif/wo/nasa/fin3.doc

NGT4-52401

4.0 CONCLUSION 56

5.0 RECOMMENDATIONS 57

APPENDIX A: DERIVATION OF THE AERODYNAMIC STABILITY

EQUATIONS 58

APPENDIX B: NASA VERIFICATION AND VALIDATION OF SOFTWARE

SYSTEMS 61

REFERENCES 68

GLOSSARY OF TECHNICAL TERMS 72

INDEX 79

Disk 000008 iV
File: lif/wo/nasa/fin3.doc

NGT4-52401

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

Table of Figures

1 - AIRCRAFT APPLICATIONS VS AI METHODS MATRIX

2 - SYSTEM WITH AGENT-BASED ARCHITECTURE

3 - AI SOFTWARE SYSTEM

4 - AN INFERENCE TREE FOR AIRCRAFT PILOT AIDING

5 - BELIEF NET USING BAYESIAN APPROACH

6 - A FUZZY CONTROLLER

7- BASIC NEURAL NETWORK ARCHITECTURE

8 - DIRECT ADAPTIVE/LEARNING CONTROL SYSTEM

9 - COMMAND AUGMENTATION SYSTEM

10 - SIMPLE NEURAL NETWORK

11 - SYSTEM ACQUISITION LIFECYCLE

4

7

8

16

21

22

25

43

44

41

53

Disk 000008 V
File: lif/wo/nasa/fin3.doc

NGT4-52401

1.0 INTRODUCTION

Artificial intelligence (AI) is currently one of the most challenging topics in the field of
aircraft automation, because of the safety-critical nature of these systems and the
newness of their application. The problem is the discipline of artificial intelligence has
not been applied by traditional engineers in aerospace and mechanical industries. It
has been mastered primarily by a small community of applied mathematicians and

computer scientists who, typically, have little or no knowledge of aircraft technology.
For this reason, the powerful advances in the AI field have found little application in
engineering practice. The goal of this report was to integrate the power of AI into the
traditional process of software development. The report effectively transitions AI from
an emerging technology to a technology that was routinely considered by engineers for
the development of aircraft automation systems. The approach was to develop 1) a
relationship matrix that identified aircraft automation tasks that were good candidates
for AI implementation, and 2) a formal evaluation process for neural networks.

This report addresses two timely and critical topics in this field: 1) guidance to

managers in the use of Artificial Intelligence in aircraft automation, and 2) the
verification and validation of neural networks. Advances in electronics and computer
technology have had a profound effect on modern aircraft. The evolution of artificial

intelligence and computer technology provides the ability to develop more advanced,
sophisticated and sturdy cockpit systems. Piloting is a classical expert behavior and
the complexities of aircraft systems will provide challenges for the systems developer
for years to come.

Section 2.0 of this report is intended to overcome the lack of understanding of the use
of AI in the area of aircraft automation. To remedy this deficiency, a matrix was
developed which identified typical aircraft automation topics conducive to various AI

methods. The purpose of this matrix was to provide top-level guidance to managers
contemplating the possible use of AI in modern avionics systems. The section started
with an explanation of various AI methods that have been successfully utilized in
aircraft automation. Next, an explanation of the characteristics of aircraft automation
tasks that are conducive to AI is presented. The matrix is listed in section 2.2

Section 3.0 deals with a much narrower problem, the use of an AI method called neural

networks which is applied to a neural-based aircraft flight controller. This particular AI
method has been selected for two reasons. First, neural networks was selected to
demonstrate an example of the power of AI in aircraft automation with some technical

depth, and to provide educational benefit to the report author. Second, this application
of AI was of strong interest to the project sponsor, NASA Dryden Flight Research
Center, who needed a method for evaluating the neural-based flight controller before
flight test. This section presents a verification and validation (V&V) method for the
evaluation of a neural-based flight controller developed at NASA Ames Research
Center and scheduled for flight demonstration on the F-15 "ACTIVE" aircraft at NASA
Dryden Flight Research Center.

In the field of Computer Science, software has been traditionally evaluatedl verified and
validated using standard quality assurance methods. As neural networks gain wider

Disk 000008 1
File: lif/wo/nasa/fin3.doc

NGT4-52401

acceptance and are successfully used in the implementation of safety critical systems,
it will become possible to progress from using standard guality assurance methods to
an approach that will be suitable for neural networks. Since such networks are created
using a very different paradigm from conventional software, a new framework for V&V
was necessary. This section begins with a discussion of the functionality of traditional
and neural-based flight controllers. Next, the NASA standard V&V approach for
software .was described. With this background, the report proceeds to expand the
standard NASA approach to incorporate the evaluation of neural networks.

Because of the multi disciplinary nature (aerospace engineering, software engineering,
computer science, knowledge engineering) of this report, a glossary of technical terms
and an index were provided. Advances in the understanding of AI in aircraft
automation are critical at this time. In general, both AI and neural networks are being
considered for safety critical systems. The increased utilization of these technologies
requires a guided, systemic application that was addressed in this study.

Disk 000008 2
File: lif/wo/nasa/fin3.doc

NGT4-52401

2.0 AI Methods Matrix Vs Aircraft Applications

There is a kaleidoscope of international research and development activities related to
knowledge-based aircraft automation. Topics range from man-machine interface to
situation assessment, automatic flight planning, and flight control. Much work has
been accomplished in the development of knowledge-based aircraft systems, but the
results are still not mature enough for routine use. There are several reasons
knowledge-based aircraft systems are desirable. First, the availability of technology
itself tends to drive the design of aircraft automation. Second, since over half of all

aviation accidents are caused by human error (Nagel,1988), concern for safety and the
belief that automation can reduce human error lead to new automated systems. Third,
fuel economy can be enhanced through automated navigation. Fourth, automation
offers the potential for reducing crew workload and stress. Finally, the special
requirements of military missions, such as the need for extreme flexibility -- flying at the
lowest possible altitude (300-500 feet) at fast speeds (400-600 knots), the complexity
of sensor and weapon control ta_ks, and the importance of timing, demand the use of
knowledge-based systems to support military pilots.

2.1 The Matrix

The Matrix shown in Figure 1 presents aircraft applications as rows and appropriate
artificial intelligence methodologies used in the development of aircraft automation
systems as columns.

2.1.1 Matrix Columns: AI Methods Used In Aircraft Automation

The discipline of artificial intelligence is a large, ever evolving area of knowledge.

There is no clear separation between the various methods. Some methods overlap
and others are applied in combination, as hybrid methods. All this tends to cause
confusion among the uninitiated, that is, people that are not computer scientists or
mathematicians. The organization of the various AI methods presented here is not
standard. However, it is somewhat simplified since it is intended to facilitate an
understanding of the AI discipline and assist aerospace managers in selecting the most
suitable AI method(s) for a given application.

The various AI methodologies are organized into six categories as shown in Figure 1:

1. Logical Methods
2. Object Representation-based Methods
3. Distributed Methods

4. Uncertainty Management Methods
5. Temporal Methods
6. Neural Methods

Disk 000008 3
File: lif/wo/nasa/fin3.doc

NGT4-52401

Aircraft Applications vs. AI Methods Matrix

Aircraft

ADtflications

Pilot Vehicle
Interface

_Pvq
(PVl)

Pilot Task

Management

(PVl)
Mission

Management

Cockpit

Displays

(PV])
Pilot Intent

Pilot Error

(PVI)
Pilot

Dialogue

Situation

Assessment

Automatic

Flight Planng

System Status

Diagnosis

Aircraft

Flight
Control

l)
2)
3)
4)

1)
2)
3)

Artmc_a z_i===
Intelligence Methods

Methods

Referenced

Au_ors

Funk

Shelnutt

Krobusek

Onken

Wilber

Amalbeni

Chin

I) Shelnutt

1) Mitchell

2) Onken

3) Chin

4) Rouse

I) Onken

1) Chin

2) Onken

I) Onken

1) Ball

1) Jorgenson

2) Torah

3) Jorgenson &

Schley

4) Steck

5) Painter

6) Werbos

Object Distrtbnted

Representat- Methods
ion-based

Methods

n

I

Uncertainty

Management
Methods

Temporal
Methods

Neural

Methods

Figure 1 - Aircraft Applications Vs AI Methods Matrix

DiskO0OOO8 4
File: liflwolnasaJfin3.do¢

NGT4-52401

The Loqical Methods are based on formal logic and are used to represent and reason
about procedural knowledge. Object Representation-based Methods are used to
represent and reason about goals, plans, scripts, cases, and events and capture
knowledge about such items. Distributed Methods are used to coordinate multiple
reasoning options. Uncertainty Manaqement Methods are used to deal with
uncertainties in non-deterministic conditions. Temporal Methods are used to reason
about time-dependent events or activities. Neural Methods are based upon the
reasoning of the brain's biological processing of information and decision making.
Each methodology is described in Section 2.2.

The dots in the boxes in Figure 1 identify where an AI method has been successfully
implemented in an aircraft application. The names of the authors of various references
that describe the given implementation are listed in the second column of Figure 1.
The numbers listed before the names refer to the short explanations of each author's
work, in subsections 2.3. For example, the referenced author, "Funk" which is row "
PVI Pilot Task Management"which means that this author's referenced article is about
the subject of Pilot Vehicle Interface, Pilot Task Management. The dot adjacent to
Funk is in the column that represents Logical Methods, which means the
implementation of that task was developed using a Logical Method. To obtain
additional information about this implementation, go to subsection 2.3.1 Pilot Task
Management and item 1 will provide a short summary of Funk's paper. In addition,
Funk is listed in the reference material in case a copy of his paper is desired.

2.1.2 Matrix Rows: Aircraft Automation Applications Conductive To AI

With AI, it has become possible to implement such methods in a

technologies, including the field of aircraft automation. The aircraft
applications are conveniently grouped into the following five categories:

number of
automation

1. Pilot-Vehicle Interface, with it's subtasks of Pilot Task Management, Mission
Management, Cockpit Displays, Pilot Intent, and Pilot Dialogue

2. Situation Assessment

3. Automatic Flight Planning
4. System Status and Diagnosis
5. Aircraft Flight Control

The rows in Figure 1 contain these categories.

The applications that are candidates for artificial intelligence are those that require the

system to:

• infer a useful answer when the required input information is incomplete
• reason and form conclusions even when the real world does not conform to

rigid assumptions required by analytical algorithms
• act like humans and can cope with ambiguous, vague and uncertain

environments

Disk 000008 5
File: lif/wo/nasa/fin3.doc

NGT4-52401

Before AI, such tasks relied entirely on human intelligence. Automation, if any, was
based on analytical algorithms. An analytical algorithm is basically a recipe. If the
recipe is followed, predictable results will be achieved. Analytical algorithms exhibit
excellent performance characteristics for tasks requiring a significant amount of
computations. Future aircraft automation systems will be based on a combination of
artificial intelligence and analytical algorithms. Artificial intelligence deals with rules of
thumb and incomplete information. When the aircraft does not conform to rigid
assumptions required by analytical algorithms, artificial intelligence systems can

generate a result. Like humans, artificial intelligence systems have an "intuitive" ability
to cope with ambiguous, vague and uncertain environments. They make deductive

decisions in novel situations and generalize from past experiences:

Disk 000008 6
File: lif/wo/nasa/fin3.doc

NGT4-52401

2.2 Artificial Intelligence Methods

This section provides a brief description of the field of artificial intelligence. AI is
described as a set of tools that a manager can utilize to build aircraft automation
systems. The introduction describes the basic AI agent-based architecture. Next, the
AI software portion of the architecture is presented. The remainder of this section is
devoted to the description of the six methodologies that constitute AI software, as
explained in 2.1. The basic structure of an AI system in terms of agent-based
architecture is shown in Figure 2.

"6

AI Application _oftware

System Software

System Hardware

Sensors] Effectors

Perception Actions

Figure 2 - System with AI Agent-based Architecture

The typical cockpit AI system has a set of sensors to receive input and a set of
effectors to allow output in the form of actions. The system is composed of hardware,

system software and AI application software. A simpler example of an agent is a PC:
where the input is the keyboard, the output a set of commands shown on the monitor,
and the system hardware and software are the PC hardware and operating system.

Disk 000008 7
File: Iiflwolnasa/fin3.doc

NGT4-52401

The AI software system architecture is pictured in Figure 3.

Knowledge Base

.(Facts and Rules)

General Knowledge

Data Base

I Inference Engine

Program ,

Rule Interpreter/Control
Strategy

Current Situation

Figure 3 - AI Application Software

This architecture is different from conventional algorithmic programs in that the
knowledge is separated from how it is used. Two other fundamental differences
between conventional software and AI software are: 1) AI software uses highly domain-
specific knowledge, and 2) the knowledge employed are heuristic rather than
algorithmic in nature (Gonzalez, 1993, page 22). The architecture is composed of three

separate entities: the knowledge base, the database, and the inference engine
program. The knowledge base contains the problem domain knowledge that is

explicitly represented as a collection of facts, rules, and relationships about the problem
domain objects and concepts. The database contains assertions about the problem
currently under consideration. The inference engine component represents the control
of operations that continuously update the database allowing it to draw conclusions,
and establishes the sequence in which different rules in the knowledge base are
brought to bear on the problem.

In the development of a knowledge-based system, the two areas of development are
the knowledge base and the inference engine. The knowledge base contains all the
relevant, domain-specific, problem-solving knowledge. The choice of AI methods to

represent this knowledge is derived from the nature and format of the application
domain knowledge. The inference engine is the interpreter of the knowledge stored in
the knowledge base. It consists of a set of operators and controls. The choice of a

reasoning method is based on the knowledge representation and the application
domain. Depgnding on the reasoning method selected, the inference engine can have
the ability to make inferences, that is, derive new facts from the knowledge base and
add these facts to the application knowledge base.

Disk 000008 8
File: lif/wo/nasa/fin3,do¢

NGT4-52401

Paramount in the development of a knowledge-based system is the development shell.
Development shells support knowledge representation and reasoning and assist in the
structuring, debugging, modifying and expanding of the knowledge base. Depending
on the application, development shells can be developed for a specific project or can
be acquired commercially.

The six methods used to implement the knowledge base and the inference engine are

the topic of the following subsections.

Disk 000008 9
File: lif/wo/nasa/Sn3.doc

NGT4-52401

2.2.1 Logical Methods

Logical methods consist of the following: logic-based systems, rule-based systems, and
search. Logic-based systems, rule-based systems have logic as their theoretical
foundation. Basic search methods have always been used in AI to solve problems by
exploring the problems domain-specific problem space.

Logic-Based Systems

In logic-based systems, logic is utilized for knowledge representation, as well as,
reasoning and inference. Logic originated with the ancient Greeks as an accepted set
of rules of reasoning. The nature of logic-based systems is algorithmic. Predicate logic
includes propositional logic. Propositional logic is composed of simple statements that
have a value of true or false. Simple statement are combined through the use of
propositional connectives (e.g., and, or) to form complex statements which have a
value of either true or false. Predicate logic, is more useful since it has the ability to
express relationships between objects. These objects can be people, concepts or
other objects. Predicate logic can also represent actions or an action relationship
between objects.

An example of a simple propositional logic statement is:

Loyola is a university
This is a simple statement having a value of true or false.

An example of a complex propositional logic statement is:

(Loyola is a university) and (Loyola is in Westchester)
This is the conjunction of two simple statements, joined using the 'and'
connective.

In the predicate logic, more complex logic can be expressed using predicates. For
example:

controls(pilot, fo15)
expresses the predicate 'controls' to represent the action relationship
between two terms; the pilot performing the act of controlling an F-15
aircraft.

Predicate logic allows one to have variables that represent objects that at the moment
may be unknown. Using the above example, the variable X could represent any aircraft
as follows:

controls(pilot, X)

expresses the predicate 'controls' to represent the action relationship
between two terms; the pilot performing the act of controlling something
to be determined in the future.

Disk 000008 10
File: liflwolnasa/fin3.doc

NGT4-52401

Additionally, variables can be qualified by two quantifiers. The universal quantifier, V
X, states that "for all X, it is true that ". For example:

V X, [pilot(X) ---> controls (X, f-15)]
states that for all X, it is true that the set of pilots represented by X are
able to control an F-15 aircraft.

The existential quantifier, 3, states that "there exists an X, such that ". For example:

3 X, [pilot(X) _ controls (X, f-15)]
states that there exists an X, who is a pilot who can control the F-15
aircraft.

Reasoning involves thinking coherently and logically,-and making inferences from
known facts.

For example, if larger(X,Y), means Y is larger than X. Then

and
larger(747, 767)

larger(767, F°15) are true,

then through deductive reasoning, it can reason to determine that:

larger(747, F-15) is true.

Deduction is the most widely used reasoning method since it guarantees correct results
if the knowledge-base axioms are correct. Given correct minor premises supported by
correct evidence, deduction can deduce a provable major premise.

Abduction is defined as a method where the major premise is evident, but the minor
premise is not and therefore the conclusion is only probable. Abduction does not
guarantee correct results since it tries to explain things. It is a good method to use for
diagnosis.

Induction is a demonstration in which the general validity of a premise is inferred from
observing the validity of minor premises and stating if the minor premises are correct
the major premise is correct. Its reasoning from particular facts or individual cases to a
general conclusion. Induction does not guarantee proof, but it forms the basis of
scientific discovery.

Making inferences entails the derivation of new facts from a set of facts. 'Modus
ponens' states:

If the statements p and (p --> q) are known to be true, then we can infer

that q is true.

Disk 000008 1 1
File: lif/wo/nasa/fin3.doc

The 'modus tollens' rule of inference states:

If (p _ q) is known to be true, and q is false, then p is false.

p.->q

__._.q__

-p

NGT4-52401

Disk 000008 12
File: lif/wo/nasa/fin3.doc

NGT4-52401

Rule-based Systems

Rule-based systems can be utilized for knowledge representation, reasoning, and
inference. Rules in such systems have a natural ability to represent heuristic
knowledge. IF-THEN rules are a natural format used by experts to express problem-
solving knowledge in many types of domains. Rule-based systems tend to be easy to
implement and understand. Rules can capture knowledge such as that in the following
example about an aborted landing (Painter, 1994):

IF (flight segment = "Final Approach") AND (altitude << 50 feet over ground)
THEN new flight segment : "Landing"

IF (flight segment = "Final Approach") AND (recognized crew intent = "Missed
Approach") new flight segment: "Missed Approach"

The construction of a rule-based system that constitutes a pilot-aiding system is a
formidable task and needs be divided into three subtasks, namely 1) knowledge
acquisition, 2) knowledge base organization, and 3) maintenance (Chin, 1993).
Knowledge acquisition involves understanding the pilot's thinking processes,
understanding the pilot's language (the English language is very ambiguous), and the

translation of this information into the production rules. Maintenance is extremely
critical since errors or inconsistencies in the rules of a knowledge base can be very
damaging.

Primary reasoning mechanisms used for rule-based systems are 1) forward chaining
(data driven), 2) backward chaining (goal driven), and 3) pattern matching.

Backward chaining starts with a hypothesis that requires proving, and from there,
searches for the evidence that is needed to support the hypothesis. If this evidence
exists then it can be concluded that the original hypothesis is also true. Thus,
backward chaining is effectively working from the hypothesis back to the evidence.
Forward chaining takes as inputs to the system all the available evidence and from this
information lets the system deduce which hypothesis is true.

Pattern matching is the process of determining whether two objects have a _imilar"
structure. The similarity metric used can be simple, such as requiring that the two be
identical or more complex requiring that the two meet certain specific conditions.

Disk 000008 1 3
File: lif/wo/nasa/fin3.doc

NGT4-52401

Search

Search is a process of methodically exploring a problem space. In general, search
methods are well suited for AI applications. The selection of a search methodology is
based on what is most effective for a particular problem domain. Basic search
methods that may be effective for aircraft automation include depth-first, breadth-first,
best-first, hill climbing and branch and bound optimal search.

Depth-first search is a blind search since it always starts expansion of nodes in a single
direction to the deepest level of the tree. Only when the search hits a dead end does
the search go back and expand nodes at shallower levels. While depth-first search is

easy to implement, it is inefficient because it commits systematically exploring in a
single direction at a time before examining adjacent nodes. Breadth-first method, also
a blind search, investigates all the nodes at a given level of the tree and if an answer is
not found, proceeds to the next lower level.

The hill-climbing search method was developed from the technique of depth-first search
with the addition of local measurements. The outcome of each direction of search is

compared against an evaluation function at each node, base on knowledge built into
the tree. The evaluation function, or heuristic, determines the next appropriate step
taken. Hill-climbing technique can greatly improve search efficiency in certain domains.

Best-first search reasons forward from the best" node, no matter where it is in the

partially developed search tree. Best-first search requires additional knowledge at the
node level. In the best-first search, an estimate is provided at each node of how far the
node is from the solution. With this information, the shortest path is selected. The total
path length to find a solution using this technique tend to be closer to the optimal path
length than those used by pure depth-first or breadth-first search.

The branch and bound search, another directed search, searches forward from the

least-cost partial path through the search tree. The technique is used during a search
where there will be many dead-end paths in the search tree space. This system
extends the shortest path by one level, creating as many new incomplete paths as
there are branches, and these paths are added to the set from which the shortest is
again chosen. This process is repeated until the solution is found along the optimal
path.

Disk 000008 14
File: lif/wo/nasa/fin3,doc

NGT4-52401

2.2.2. Object Representation-based Methods

As good as logic-based systems are they are lacking in their ability to show t:ausal
relationships" and associations among objects.

Object representation-based methods have graphical structures in the form of a

network. The nodes of the network represent fact, objects or concepts, while the arcs
of the network show relationships or associations among the nodes. This section
describes the following representation and reasoning systems:

1. Associative network-based systems
2. Frame-based systems
3. Object-based systems
4. Model-based systems
5. Qualitative systems
6. Case-based systems.

Associative Network-Based Systems

Associative (semantic) networks provide an ability to represent structured knowledge
about physical or conceptual objects more easily than rules. This knowledge-based
representation was originally developed in the late 1960's by M. R. Quillian to support
the work on natural language processing. The networks provide a way of representing
facts and relationships in the network. Network programming functions provide an
ability to reason. A=sociative networks are labeled, directed graph, which symbolizes
the association between various concepts. Semantic relations such as: Ts-a'i lbart-of';
"connected-to", and "number-of" all show types of relationships between nodes.

Disk 000008 1 5
File: lif/wo/nasa/fin 3. doc

NGT4-52401

Frame/Object-Based Systems

Frame/object-based systems are closely related to associative networks. The concept
of frames was developed by M. Minsky (1975) and is used to represent concepts and
the relations between concepts. Objects are similar to frames, except they are more
universal since they support any type of general computational need and provide
encapsulation and polymorphism. Frame/object based representations account for a
system's ability to deal with new situations, either object or actions, which are
encountered each day, by using existing knowledge of previous events, concepts, and
situations. Frame/objects represent knowledge rather than rules. Frame�objects are the
preferred knowledge representation scheme used in model-based and case-based
reasoning.

Frames support arbitrary levels of nesting for any given slot. The slots in frames
correspond to the attributes of an entity. On the graph below, there are different types
of objects, each with their own set of properties represented in frames. Apart from
using the property inheritance of the 'is a' and 'inst' links, much of the power of
frame/object nets stems from the ability to attach procedures to frame slots. Frames
are most useful in representing the properties of objects, individuals, and events.
Dynamic properties can also be captured in the form of action frames and state change
frames. An example of aircraft pilot aiding using frames is Figure 4 (Chin, 1993),
below.

Mode I

Mission_Ops Frame (Hypothesis)

Status I Control I Maneuver I Constraint,,

Flight_0ps Frame (Hypothesis)

T
Flight Dynamics Frame (Hypothesis)

T
Aircraft State Frame (Hypothesis)

T
Raw Flight Data Frame

Figure 4 - An Inference Tree for Aircraft Pilot Aiding

Disk 000008 16
File: lif/wo/nasa/fin3.doc

NGT4-52401

Figure 4 shows the use of frames. The lowest level of information is the raw flight data
that is derived from vehicle. Sensor information is converted the correct units and

format for processing. The slots of the Aircraft State Frame are updated with the new
sensor data from the Raw Flight Data Frame. Aircraft State Frame slots that contain
procedures use the updated Raw Flight Data Frame data as input to their procedures.

Disk 000008 1 7
File: lif/wo/nasa/fin3.doc

NGT4-52401

Model/Qualitative/Case-based Systems

These three reasoning systems use a computer model n place of expert knowledge.
These systems use frames, objects, and semantic network representations. Diagnostic
systems have been developed using model-based reasoning.

Model-based reasoning represents physical systems by their structure and functionality.
Qualitative reasoning is a reasoning system that qualitatively simulates the behavior of
a physical system. Both eliminate the need for knowledge elicitation from the experts.

A case-based reasoning system consists of a library of historical cases, .a means of
using the key elements of the present problem to find and retrieve the most similar

cases from the library, and a means for making modifications to the proposed solution
when the case on which the solution is based is not identical with the current problem.

The ability to reason about the similarities of the current problem with the historical
cases is called classification c_se-based reasoning. In classification, the system
establishes whether or not a new case should be treated like an existing case. In this
category, the system should come up with the pros and cons of why a new case should
or should not be treated like an existing case.

Disk 000008 18
File: lif/wo/nasa/fin3doc

NGT4-52401

2.2.3 Distributed Methods

Distributed methods are a relatively new concept used to coordinate multiple reasoning
components.

Blackboard Systems

Blackboard architectures provide a structure where several knowledge sources can
have there own particular knowledge representation and reasoning method. The
knowledge sources do not communicate with each other directly. The knowledge

sources can only see the blackboard, which constitutes a-global knowledge base.
Once a knowledge source gets the activation permission from the blackboards control
unit, it takes the input information from the blackboard, performs its own reasoning

process, and returns the result to the blackboard.

Opportunistic Reasoninq

An opportunistic reasoning system uses both backward and forward chaining,

depending on the nature of the data and the degree of goal-orientation of the user. In
this reasoning method, the backward and forward mechanisms, as well as the search
mechanism, are included as a part of the knowledge base, and the developer selects
the circumstances suitable for applying each mechanism.

Disk 000008 1 9
File: liflwo/nasa/fin3.doc

NGT4-52401

2.2.4 Uncertainty Management Methods

In reality, human knowledge is for the most part inexact and uncertain. Facts and rules
in knowledge-based systems can contain various shades of vagueness, imprecision,
and errors. Various methods can accommodate this uncertainty. Bayesian and Fuzzy
Logic methods are described.

Bayesian

All the knowledge representation methods that have been considered so far have been
based on the assumption that the knowledge being represented is exact and certain.
This is often not the case, we frequently need to reason with inexact or incomplete

information. The simplest probabilistic reasoning is based on Bayes' Theorem.
Suppose we have evidence (e), and a hypothesis (h_). The probability of concluding
the hypothesis (h_), given the evidence (e), has the form of a conditional probability:

defined by the ratio
p(hil e),

p(e) = p(hi _ e) / p(e).

Having the following equalities for conditional probabilities:

p(hic_e)=p(hil e)p(e)=p(el hi)p(hi),

where p(h_ c_ e) is the probability that hi and e occur together.
Bayes formula:

p(h_l e) = p(e I h_) p(h,)/p(e).

From this, we get the

Assume that the system has a number of rules that have e in their antecedent, with
different consequence hi, h2.... hn. Then, the probability of the evidence e is the sum
of the intersections of e with all possible hypotheses, as:

p(e) =T.p(e_hj)=Zp(el hj)p(hj).

We can now replace the denominator of Bayes formula with either of the two above
and determine the sum of the intersections. In Bayesian probability, p(h_) is called the
prior probability, and p(h_] e) is the posterior probability. The prior is the belief in the

truth of the hypothesis. The posterior is the revised belief, after observing the evidence
of e as a fact in a case.

Using IF-THEN rules to represent knowledge, the rule would be shown with a degree of
uncertainty as follows:

Rule:
IF E is true

THEN H can be concluded with probably p

Ois_00OOO8 20
File: lif/wolnasalfin3.do¢

NGT4-52401

With an aircraft automation example:

Rule:

IF (the light indicates the landing gear are down) is true
THEN (aircraft is in landing mode) p(0.95)

Assume there are two hypotheses: hi = the aircraft is in landing mode and h2 = the

aircraft is not in landing mode. The evidence that is used in both hypotheses is e =
the light indicates the landing gear are down. The belief net for this example is shown
in Figure 5. The prior probabilities are p(hi) = 0.10 and p(h2) = 0.90.

hi = Aircraft is
in landing mode

p(hl)=0.10

p(el h_) = 0.95

hz = Aircraft is

not in landing
mode

p(h2) = 0.90

/
el h2) = 0.05

Figure 5 - Using Bayesian Approach

Applying the Bayes formula the posterior probabilities are:

p(hll e) = p(el hl_J.£L__J

p(el hi)p(hl)+p(eJ h_)p(h2)

= (95)(.10) = .68

(.95) (.10) + (.05) (.90)

p(h21 e) = .32

Disk 000008 2 1
File: lif/wolnasalfin3, doc

NGT4-52401

Fuzzy Logic

Fuzzy logic systems provide a mathematical tool for dealing with uncertainty and
imprecision. This is done by using words in computing and reasoning as a way of
implementing general concepts. Fuzzy systems store banks of fuzzy associations or
common sense rules. Fuzzy logic systems reason with parallel associative inference.
When given input, a fuzzy logic system fire eachfuzzy rule in parallel, but to different

degrees, to infer a conclusion or output. Neural and fuzzy logic systems naturally
combine to evolve adaptive systems with sensory and cognitive components (Kosko,
1992). A block diagram of a fuzzy controller is shown in Figure 6.

Sensors Actuators

O

O

O

l

oml

¢J

oml

N
N

\-
Continuous

variables

¢J
=ml

O

N:
N'
=

/
Linguistic variables

O
.=1

¢J

oml

N
N
Ii

¢J

O

j O
/

!
Continuous

variables

Figure 6 - A Fuzzy Controller

All sensor signals are converted to linguistic variables in a process called fuzzyification.
This can be viewed as a quantization procedure. The quantified linguistic variable is
then input to the fuzzy control law logic. The fuzzy control law logic, which can be a
mixture of algorithms and/or rules, generates a control signal in the form of a linguistic
variable. The linguistic variable is then mapped into a real number by an operation
called defuzzyification.

DiskOOOOO8 22
File: lifhNo/nasa,'fin3.doc

NGT4-52401

2.2.5 Temporal Methods

Temporal methods deal with ability to reason about the time relationships between
events. Time relationships are critical in aircraft automation especially in military and
emergency context.

Temporal Reasoninq

Many expert systems reason qualitatively about problems, but most of their reason is
static analysis and involves a limited analysis of dynamic aspects of the problems

because they lack a well-developed notion of time. In the early 1980s, an interval-
based approach was developed (Allen, 1984) which provides a scheme of representing
and manipulating time that is generally accepted basis of all temporal reasoning
models,. In his approach Allen defines all actions or events as intervals of time having
a nonzero duration. An interval is a segment of the time line bounded by two real
numbers, (h, t2) where h < t2. Time point tl is called the starting point of the interval
and t2 its end point. Allen also developed a method for describing relationships
between two intervals.

Disk 000008 23
File: Iif/wo/nasa/fin3.do¢

NGT4-52401

2.2.6 Neurocomputing

Neurocomputing systems represent a very different computational paradigm to those
previously discussed. The success and failure of the previously described AI methods
is dependent on the ability to form some compact description of a task. As described

previously, this may take the form of rules, for instance, which allow the manipulation of
information in a governed way. However, there are many applications, such as speech
recognition, adaptive system control, and the visual interpretation of images, where
attempts to find compact descriptions have only had limited success (Werbos). The
rationale behind the development of neurocomputing is to approach AI processing in a
radically different and new way.

The fact that the human brain appears to handle speech recognition, adaptive system
control, and the visual interpretation of images, with ease has led to a re-evaluation of
the processing of these tasks. Neurocomputing systems estimate non-deterministic
input-output functions. Training data determines the values of system internal weights.
Unlike statistical estimators, neutocomputing systems estimate a function without a
mathematical model of how outputs depend on inputs. Neurocomputing systems learn
from numerical training data that represent input-output sets.

Disk 000008 24
File: lif/wo/nasa/fin3.doc

NGT4-52401

Neural Networks

A simple definition of a neural network is provided by Dr. Robert Hecht-Nielsen the
inventor of one of the first neurocomputers, as: "...a computing system made up of a
number of simple, highly interconnected processing elements, which process
information by their dynamic state response to external inputs"(Caudill, 1989). Neural
networks are typically organized in layers. Layers are made up of a number of
interconnected tlodes" which contain an _ctivation function'.' Training data or

actual data are presented to the network via the Input layer': which communicates to
one or more hidden layers" where the actual processing is done via a system of
weighted 't:onnections'; The hidden layers then link to an 'Output layer"where the
answer is output as shown in the Figure 7.

Hidden Lay,ers

connections

Input Layer Output Layer

Figure 7- Basic Neural Network Architecture

Neural networks can be programmed or trained to store, recognize, and associatively

retrieve patterns or database entries, to control ill-defined problems, or, in general, to
estimate sampled functions when the form of the function is not known. The principal
characteristics of neural networks are: 1) topology or mapping, which describes the
number and characteristics of processing elements, the organization of the network into

layers and the connections between layers, 2) learning, which illustrates how
information is stored in the network and the training procedures, and 3) recall, which
describes the method of retrieving the stored information."(Noor & Jorgenson, 1996).

There are two types of network structure based on the connection pattern

Disk 000008 25
File: lif/wo/nasa/fin3.doc

NGT4-52401

(architecture). Neural nets can be grouped, into feed-forward and recurrent (or
feedback) networks. In a feed-forward network, links are unidirectional and there are
no cycles. In a recurrent network, the links can form arbitrary topologies.

Neural networks used for control systems should be specifically designed to exploit
learning behavior. A learning control system is one that has the ability to improve its
future performance, based on experiential information it has gained in the past, through
closed-lo0p interactions with the plant(aircraft)and its environment. Improving its

performance indicates an autonomous quality. To improve its future performance, the
systerfi must operate in the context of an objective function.

Disk 000008 26
File: lif/wo/nasa/fin3.doc

NGT4-52401

2.3 Aircraft Automation Applications

This Section describes the aircraft automation tasks listed in the first column of the
matrix.

2.3.1 Pilot-Vehicle Interface

The Pilot-Vehicle Interface (PVI) should be responsible for all communication between
the aircraft and the pilot. This should include but is not limited to reading pilot's
intention during his use of the throttle, stick, manual inputs to a touch screen or any
switches, levelers, and valves in.the cockpit, as well as pilot dialogue with the cockpit
computer by voice. It should interpret and understand pilot actions in the context of
pilot activities and mission events. The AI system could then respond by generating
displays and setting control devices, feed the pilot as much information as he needs
and is able to perceive at the given moment. The system also should detect pilot's
errors, and adaptively aid him in the execution of his tasks to optimize his situation
awareness and allow him to focus attention on important/critical events. The system
could provide a display that meets the pilot's expectations in the specific situation and
could be sensitive to the pilot's personal preferences and techniques.

The following paragraphs describe the various aspects of the pilot-vehicle interface.

Disk 000008 27
File: lif/wo/nasa/fin3doc

NGT4-52401

Pilot Task Manaqement

Pilot Task Management should, be based on adaptive aiding and information
management. Adaptive aiding optimizes information flow to match the given pilot's
abilities to understand and process information and tasks, and provides assistance if
appropriate. The system decides whether to provide the given information by voice,
alarm or display, depending upon how busy the pilot is at the given moment, and his
individual skills. The following are examples of pilot task management system available
in the referenced literature. The paragraph numbers below match those the second
column of Figure 1. • _

° Task Support System (TSS), is a prototype avionics system designed to improve
the information flow from the cockpit to the pilot and to reduce his manual and

mental workloads. The TSS uses a rule-based representation and forward chaining
reasoning, as explained in pat'agraph 2.2.1 (Funk, 1992).

. Boeing's PVI Manager focuses on the integrated management of cockpit displays
and low-level control tasks using a blackboard architecture, as explained in
paragraph 2.2.3, (Shelnutt, 1989).

. Texas Instruments developed a PVI in which the pilot can select from several types
of operational pilot-PVI relationships or degrees of automation and autonomy. This
system is a rule-based system, as explained in paragraph 2.2.1 (Krobusek, 1989).

o In the Cockpit Assistant System (CASSY), object-based representation and
reasoning are used to implement task management along with temporal reasoning
as explained in paragraphs 2.2.2 and 2.2.3 respectively. The knowledge base
started with production rules which were transformed into object-based

representation constructs (Onken, 1995).

Disk 000008 28
File: liflwolnasa/fin3, doc

NGT4-52401

Mission Manaqement

Mission management begins with on-ground mission preparation. Before flight, the
pilot is required to input into the flight computer mission navigational parameters, pilot
desired route waypoints and the characteristics of each waypoint. The mission
management software then computes the pilot desired route and a number of

alternative routes. This software also analyzes and presents to the Pilot differences
between the pilot-desired route and computer-recommended routes. Route differences

can include improve flight performance, weather and hazard avoidance, decrease
military risk, and decrease fuel consumption. Examples of mission management are:

. The Pilot's Associate program .is an intelligent co-pilot system that demonstrated the

potential of integrating artificial intelligence into avionics systems. In the Pilot's
Associate, the Mission Management function is divided into a Mission Planner
module and a Tactical Planner module. The Mission Planner module monitors

progress of the mission, evaluates the impact of route deviations, and replans the
mission when changes occur. The Mission Planner module also generates paths to
and from target areas that will minimize fuel consumption and risk. The Tactical

Planner module sorts and prioritizes threats and targets, selects appropriate
countermeasures, aids weapons deployment, and coordinates actions between
aircraft flying in formation. It analyzes the current and predicted situations and

provides the pilot with short-term offensive and defensive tactical options.
Knowledge for both planner modules consists of specific constraints, actions, rules

and deductions. Rule-based representation and reasoning is utilized, as explained
in paragraph 2.2.1 (Chin, 1992).

, Boeing's On-Board Mission Management System uses rule-based and heuristic

methods to help pilots manage their missions. Detailed explanation of such
methods is provided in 2.2.1. The system manages waypoints or mission
navigation points, selects appropriate checklists to execute the current mode of
flight, monitors aircraft systems health to evaluate current aircraft functional

capabilities and assists the flight crew in enroute replanning if require by an aircraft
system anomaly, bad weather or direction from Air Traffic Control (Wilber, G. F.,
1989 & Wilber, R., 1989).

. In the French study of cognitive modeling, a computer program that models human

reasoning, a competence model, (a model of human reasoning sufficient to perform
the task being investigated) was developed for mission management which used

Disk 000008 29
File: lif/wo/nasa/fin3.doc

NGT4-52401

over 100 goal-oriented procedures using declarative representations, as explained

in paragraph 2.2.2. The goal-oriented procedures were either tactical procedures
using mission/task completion knowledge or mission management procedures
using knowledge about systems management (Amalberti, 1992).

Disk 000008 30
File: lif/wo/nasa/fin3.do¢

NGT4-52401

Displays

The computer configures system displays based on the interpretation of past and
present pilot actions and mission events. Displays could be a function of pilot
expectations in specific situation and could be sensitive to the pilot's personal
preferences.

Example of implemented system: [put also above]

1. Boeing's PVI Manager focuses on the integrated management of cockpit_ displays
and using a blackboard architecture as explained in paragraph 2.2.3 (Shelnutt,
1989).

/,

Disk 000008 31
File: lif/wo/nasa/fin3.doc

NGT4-52401

i • Pilot Intent�Error

Past implementations of automated systems that understand pilot's intentions (listed
below) indicate that cockpit crew behavior should be modeled for normative and
individual behavior. The normative model can be based on general aviation guidelines
(e.g., landing, taxing procedures). For individual behavior modeling, knowledge about
individual, crewmembers can be learned by the on-line computer equipped with
artificial intelligence software. The computer interprets pilot's actions and checks them
for consistency with his mission goals, displaying warnings and alarms if any
inconsistency is found. The following papers provide guidance on the implementation
of such systems:

. Research on an automated system that infers pilot's intentions, called OFMspert,

was conducted at Georgia Tech, for potential use on commercial aircraft. A goal of
the research was to understand how pilots select automatic modes to control

aircraft operations. The system uses the blackboard model of problem solving, in
which pilot functions, subfunctions, and tasks relevant to the current operating
situation (such as take-off, cruise, communication with air traffic control, etc.)are
posted to a blackboard data structure. Pilot functions, subfunctions and tasks are
the actions the pilot takes necessary to accomplish the current overall flight mission
and the sequence of individual steps required to accomplish any portion of the
mission. The inten{ of the pilot is determined by the system based on various
heuristic search methods. The search methods are describe in paragraph 2.2.1
and the blackboard methods are explained as a distributed method in section 2.2.3
(Mitchell, 1994).

. In the German cockpit system, CASSY, the Pilot Intent and Error Recognition
Module, identifies discrepancies as the difference between the model of appropriate
pilot actions for the given flight plan and the actual actions. There are three

possible reasons for such discrepancies: 1) pilot error -- the pilot deviates from the
objectively correct expected behavior as derived by CASSY, 2) temporary
discrepancy of pilot intent which is not acted upon by CASSY awaiting additional

information, and 3) computer error which requires a restart of the computer system
either by the pilot or CASSY (Onken, 1995).

. For the Pilot's Associate, a model of the pilot's intentions is used to follow pilot's
actions and reasoning at several levels of abstraction. The model of pilot's action
is based on his cognitive model that includes his expectations and intentions. Since
a cognitive model is a model of the pilots reasoning, the model includes the pilot's
expectations and intentions for a variety of situations. For example, if the aircraft
mode landing, then displays about the landing procedures are provided the pilot.
The computer system provides the pilot with a feedback about his actions. The AI

methods used are rule-based both representation and reasoning, which are
described in paragraph 2.2.1 (Chin, 1992).

. The inputs to the Pilot's Associate module are the numerous switch activation, stick
movements, and engine status readings that constitute the operations of the
aircraft. From these inputs, it is the job of the intent module, to infer an
understanding of the pilot's intent. The key to the system architecture is the plan-

Disk 000008 32
File: lif/wo/nasa/fin3.doc

NGT4-52401

goal graph, which describes the elements used to link the actions or intentions of
the pilot with a particular mission goal. IF-THEN rules are used to represent
knowledge in the graph, as explained in paragraph 2.2.1 (Rouse, 1990).

Disk 000008 33
File: lif/wo/nasa/fin3doc

NGT4-52401

Pilot Dialoque

The interface between the computer co-pilot and the crew can be achieved through

speech recognition, speech synthesis, and color graphic display. Normally, lengthy
time periods are necessary for the pilot to look down and input information into the
computer. Therefore, speech recognition should be chosen as the desirable input
device. For the same reason, a speech synthesizer should be chosen as the desired

output device. The color display should be used for long messages that, perhaps,
require repetitive readings.

1. The CASSY system uses speech recognition, speech synthesis, and color display
to interface with the crew. The used phraseology for Speech output is based on the
rules of radio communication. If the message is too complex and/or too long, the
color display is used. Speech recognition is used as an input device. Knowledge is
represented and reasoned using a frame-based system as described in section

2.2.1 for speech synthesis. Neural networks are used for speech recognition.
Neural networks are described in section 2.2.6 (Onken, 1995).

Disk 000008 34
File: lif/wo/nasa/fin3.doc

NGT4-52401

2.3.2 System Status/Diagnosis

The System Status module should be used to monitor and analyze on-board systems
to determine the current aircraft state and evaluate current system capabilities. Any
detected aircraft malfunction should be evaluated to determine the degree of
degradation of the overall system capability and assess the impact of the degradation

on the mission plans. Where possible, the system should generate remedial plans.
The following example is developed by Lockheed in the Pilot's Associate:

. From the Pilot's Associate, the Diagnosis Function of the System Status module is
a fusion of statistical fault detection techniques with AI techniques including rule-
based logic (paragraph 2.2.1), blackboards (paragraph 2.2.3) and model-based
reasoning (paragraph 2.2.2), (Ball, 1992). The diagnostic process has two phases:
fault detection and fault isolation. Fault detection does not utilize AI. Fault

isolation, which employees AI, consists of three functions: the Hypothesis
Generator, the Hypothesis Evaluator, and the Hypothesis Tester.

The Hypothesis Generator function begins fault isolation by creating a list of
hypotheses or suspected faults that could explain the abnormality noticed by the
Fault Monitor. In his 1992 paper, Ball writes that reasoning with uncertainty had not
been developed at that time, because the focus of the development was a model-
based approach. Previous model-based approaches included mathematical and
classifications methods. In the mathematical method, the fault space is represented
as a matrix of component states and influence coefficients, and the process of
hypothesis generation is formulated as an optimization problem. Classification

methods for hypothesis generation use various representations of the fault space,
including IF-THEN rules, causal nets, and cause-effect sets. If the fault space
representation uses IF-THEN rules, then breadth-first, depth-first, or best-first
search strategies are used. If the representation uses causal-effect sets, the fault
space is tractable when minimal solutions are considered first. The technique used
is model-based reasoning which allows implicit modeling of the system.

In the Hypothesis Evaluator function, the suspected faults are confirmed or ruled

out by the use of a backward-chaining (goal driven) classification process. If it does
not have sufficient information, the Hypothesis Evaluator calls the Hypothesis
Tester function to run a test and generate data to analyze.

Disk 000008 35
File: lif/wo/nasa/fin3.do¢

NGT4-52401

2.3.3 Situation Assessment

The Situation Assessment subsystem should monitor events external to the aircraft. It
combines stored mission data with data from the aircraft sensors and other cooperative

sources to provide context sensitive information to the pilot. Finding consistent, correct,
and meaningful information is of paramount importance. The following are examples of
situation assessment subsystems:

. The Situation Assessment subsystem of the Pilot's Associate combines a need to
react to nominal and unexpected objects and events. This requires the subsystem
to reason about the situation in a data-driven way and focus attention on the data
that is relevant to the current mission plans. The Situation Assessment function
includes methods for reasoning with uncertainty, described in paragraph 2.2.4,
allowing preliminary conclusions to be drawn based on imperfect or suspect data,
and then be confirmed as contributing data is available and more inferences
become certain (Chin, 1992).

. The Situation Assessment subsystem of CASSY focuses on improving the pilot's
situation awareness as to flight plan executability and is responsible for
autonomous activation of replanning processes. If a conflict is detected, the crew is
informed and the relevant replanning processes activated. The subsystem is
implemented using object-based representation as explained in paragraph 2.2.2
(Onken, 1995).

Disk 000008 36
File: lif/wo/nasa/fin3doc

NGT4-52401

2.3.4 Automatic Flight Planning

The Automatic Flight Planner should create and maintain a takeoff to landing mission
profile, including routes, resources and time constraints. This system should be able to
manipulate aircraft control surfaces and the propulsion to lead the aircraft along a
predetermined path. Beginning with the start and end points and available fuel and
other resources, this subsystem should generate all flight profiles, including route,
space-time description, resource consumption, and resource consumption budgets.
For fighter aircraft, a tactics planner should be developed to provide minimum risk

trajectories to support both offensive and defensive tactical plans.

1. For the CASSY co-pilot, the inputs for route planning are the actual position, the
destination, the generated altitude, and planning mode. All of these inputs are fed
in the computer by the crew. The route planning module uses different search
algorithms. A simple best-first search is used for very time critical planning tasks. A
modified A* algorithm is used for rerouting in a very large airspace. The knowledge
representation used is object=based representation as explained in paragraph 2.2.2
(Onken, 1995).

Disk 000008 37
File: lif/wo/nasa/fin3.do¢

NGT4-52401

2.3.5 Aircraft Flight Control

Until recently, analytical algorithms were the sole basis of flight control systems. Now,
neural networks and fuzzy systems, as described in paragraph 2.2.6, are proposed as
superior substitutes in dealing with the non-linearities of aircraft flight control laws.
These new systems may be used on the ground to provide computational techniques
that aid in the creation of flight control laws. They may be used during flight tests and
simulation to improve control law development. They may be use in operation to
augment conventional flight control systems. The following examples provideaview of
current research in the use of neural network to augment aircraft flight control:

. Neural networks and fuzzy logic systems are computer architectures loosely based
on the way the human brain processes information. There are many different types
of neural networks, but common among them is the use of many simple processors
in parallel. The primary use of neural networks and fuzzy logic systems Jn control
problems is to synthesize a static or dynamic mapping from some subset of
controller inputs to controller, outputs. An example of this is the mapping that
specifies actuator position as a function of sensor inputs. Neural networks have the
ability to learn directly from data or learn on-line by altering or synthesizing non-

linear mappings. Major categories of application for neural networks and fuzzy logic
systems are aircraft flight control design tools, flight control augmentation systems,
outer-loop mode controls, and replacing software components of the flight control
system (Steinberg, 1992). The five basic neural network controller designs are:
supervised control, direct inverse control, neural adaptive control, backpropagation-
through-time (BTT), and adaptive critic methods (Werbos, 1990). With supervised
control, learning is a simple case of direct teaching; the system will not be required
to evolve. Direct inverse control is the same as supervised control. Neural adaptive
control adapts system parameters to real time unexpected changes such as the
loss of a section of an aircraft wing, which was totally unanticipated in design of the
aircraft or the design and training of the neural network. E]ackpropagation through
time is used to solve problems of optimization over time because: 1) the user or
designer is allowed to pick any utility function, performance measure, or cost
function to maximize or minimize; 2) the method accounts precisely for the impact
of present actions on future utility." (Werbos, 1990) Adaptive critic designs, like
BTT, are capable of maximizing any utility function or measure of reinforcement
over timel but they are approximations.

. Currently being developed at NASA Ames Research Center is a neural network that
rescues severely damaged aircraft by instantaneously relearning to fly the damaged
aircraft (Jorgensen, 1996). Called Intelligent Aircraft Control, the objective of this
project is to demonstrate a 1'light control concept that can identify aircraft stability
and control characteristics using neural networks, and then to utilize this information
to optimize aircraft performance in nominal, off-nominal and simulated failure
conditions"(Totah, 1996). A pre-trained multi-layer perceptron neural network with a
hybrid Levenberg-Marquardt solution technique was employed to model the
aerodynamic stability derivatives. The network consisted of two inputs, Mach and
altitude, 20 processing elements in a single hidden layer, and 32 outputs
corresponding to each aerodynamic stability derivative. Results tonclude that this

Disk 000008 38
File: lif/wo/nasalfin3,doc

NGT4-52401

,

.

.

controller exhibits both stable and robust adaptive characteristics when subjected to
mild and extreme changes in the aircraft aerodynamics."

In 1990, a paper was published addressing the use of neural networks to assist in
the control aircraft autolanding problems using adaptive control (Jorgenson &
Schley, 1990). The paper presents the mathematical models of a standard

controller, a reduced complexity model of the airframe upon which the controller
would act, and an environmental model. After the models were created, a series of
experiments were conducted using variations on neural network architectures,

training rules, and performance criteria. As a result of the experiments, it was
observed that there was a necessity for refinements in a number of neural network

concepts when faced with a complex application. Among them were the ability of a
neural network to learn discontinuities, the importance of and the potential risks
associated with grouping training data around discontinuities, the vital need for fast

convergence methods, and the advantages of incorporating a priori knowledge into
a network to facilitate convergence.

Recently, a research paper'was published, titled Linear and Neural Network

Feedback for Flight Control Decoupling" (White, 1992). The paper proposes to
develop a hybrid control system using an embedded neural network to decouple an
aircraft nonlinear control system.

The research and use of fuzzy control for aircraft flaps is shown to be useful.

Research was performed at Texas A&M University, supported by a NASA Training
Grant. The test-bed was a piece-wise, linear, longitudinal simulation of the Boeing
737-100 (Painter, 1994).

Disk 000008 39
File: lif/wo/nasa/fin3, doc

NGT4-52401

3.0 Verification and Validation Approach for a Neural-Based Flight
Controller

This section presents a verification and validation approach for the evaluation of a
neural-based flight controller developed at NASA Ames Research Center and

scheduled for flight demonstration on the F-15 ACTIVE aircraft at NASA Dryden Flight
Research Center. The basic question addressed is How can we trust this black box
with the life of a pilot and a multi-million dollar aircraft?" As neural networks gain wider
acceptance and are being used in the implementation of safety critical systems, a
comprehensive approach for system verification and validation is necessary. Since
neural networks are created using a very different paradigm from conventional
software, a new framework must be developed. This new framework includes all
conventional V&V activities, but tailored for neural networks (Suski, 1994).

This section begins with an introduction to neural networks, and control systems. A
background is provided by describing the development and resultant neural-based
flight controller. Next, an evaluation of traditional verification and validation processes
for conventional safety critical software and their applicability to the testing neural
networks is analyzed. As a result of this analysis, a revised, general method for the
V&V of neural-networks is proposed. Lastly, a specific verification and validation
approach for the subject F-15 Neural-based Flight Controller is described.

3.1 Background

The automatic control of aircraft is a straightforward task in a completely predictable
environment with a perfectly functioning aircraft, but when an unplanned event occurs
the problem can become very complex. Until recently, the pilot-vehicle interface of the
aircraft was truly the domain of the human pilot. In recent years, the aerospace
industry has developed knowledge-based copilot systems to provide assistance to
pilots in the form of warning and advice, and when the pilot is overloaded, provides
direct assistance in the execution of a variety of tasks. The newest research in this
area is the use of adaptive neural networks to completely control aircraft. This
introduction provides: 1) a definition of the term neural network, 2) a simple example of
a neural network, and 3) an explanation of a generic adaptive flight control system.

Disk 000008 40
File: Iif/wo/nasa/fin3.doc

NGT4-52401

3.1.1 A Simple Neural Network

A definition of the term neural network was given in the 1988 DARPA study:

a neural network is a system composed of many processing elements
operating in parallel whose function is determined by network structure,
connection strengths, and the processing performed at computing
elements or nodes Neural network architectures are inspired by the
architecture of biological nervous systems, which use many simple
processing elements operating in parallel to obtain high computational
rates (p. 60).

There are two basic types of neural networks, feed-forward and recurrent. In a feed-
forward network, the links are unidirectional and there are no cycles. Basically, the
network processes the current inputs, produces an output and waits for the next set of
inputs. In a recurrent network, the links can form arbitrary topologies (Russell, 1995).
Most control systems use feed-forward topologies. To understand the detailed

computations of neural networks, Figure 8 is presented which shows the topology of a
very simple feed-forward neural network.

al L W13 i, _'_ W35

a2 __W__= __ wT__r_

] W24 '

Figure 8 - Simple Forward-Feed Neural Network

The inputs are al and a2, the hidden processes are aa and a4, and the output is as.
This forward-feed network processes the following output function:

as = g(Wa,s g(Wl,a al + W2,a a2) + W4,5 g(Wl,4 al + W2,4 a2))

where g is the nonlinear activation function. Unless the threshold value of a3 is
exceeded, stimulated enough to fire, the (Wl,4 a_ + W2,4 a2) portion of the equation
will not contribute to the output as.

Disk 000008 4 1
File: liflwolnasalfin3.doc

NGT4-52401

3.1.2 Control Systems

The problem of controlling a plant using a controller is shown in Figure 9. The plant
and controller are in a feed-forward configuration.

,Controller U Plant

Figure 9 - Feed-forward Controller

The basic system control design problem is to find an appropriate control function from
the measured plant output, ym and the desired plant output, Yd to derive a satisfactory
control action u.

3.1.3 Direct Adaptive/Learning Flight Controller

The motion of aircraft is usually expressed as a set of nonlinear dynamic equations. In
the past, control of nonlinear systems using feedback linearization techniques required
very detailed knowledge of the nonlinear plant dynamics, which in turn was a
computationally intense effort for real-time onboard computers. Neural networks
overcome these difficulties through the use of limited knowledge of the nonlinear plant
dynamics and a combination of off-line and on-line, learning. The basic control system
architecture of what can become, a neural-based adaptive/learning flight control system
is shown in Figure 10.

Disk 000008 42
File: lif/wo/nasa/fin3.doc

NGT4-52401

_k

I

C°ntr°"ert

l' . _Sk
Learning
System

Plant

Reference

Control

Design

Yr

I

Ym

Figure 10 - Direct Adaptive/Learning Control System

The system control design problem is to find an appropriate functional mapping from
the measured plant outputs and the desired plant outputs, to a control action that will
produce satisfactory behavior in the closed-loop system. The controller in Figure 10
has the added capability of learning, which provides it the ability to improve its

performance based on performance feedback and an objective function contained in
the learning system. The controller in the above figure has four inputs and two outputs.
The controller inputs are the measured plant outputs Yr., the desired plant outputs Yd,
estimates of the control law parameters k, which are output from the learning system,
and a correction factor _k for the current control system parameters. The controller

outputs are the resultant control action u and the signal to the learning system that is
the perturbation in the control parameters 8k to be associated with the previous

operating cycle. The estimates of the control law parameters are adjusted based on the
error e, which is equal to the sum of the measured plant outputs and the outputs of a
reference system y,. The reference represents the desired behavior for the augmented

plant. Learning augmentation is accomplished by using the learning system to store
the required control system parameters as a function of the operating condition of the
plant. The system provides the required perturbation to the control parameter k

generated by the learning system.

Disk 000008 43
File: lif/wo/nasa/fin3.doc

NGT4-52401

3.1.4 Direct Adaptive Tracking Control Architecture

The concept of a neural-based flight controller is based on the work being
accomplished on the Advanced Concepts Program Research Project. It is lead by Dr.
Charles Jorgensen at NASA's Ames Research Center, with flight tests underway at
NASA's Dryden Flight Research Center using a modified F-15 jet fighter (Totah, 1996).

The direct adaptive tracking control architecture developed by Kim and Calise is the
basis for the NASA flight controller described in Figure 11 below.. In their paper (Kim,
1994)0 the development of a direct adaptive tracking controller using a neural network
for an F-18 aircraft model is presented. The neural network presented overcomes
difficulties that conventional controllers exhibit. The dilemma of limited knowledge of
nonlinear plant dynamics is mastered through the ability to train the neural network both
off-line and on-line in flight learning. The second difficulty is overcoming the processing
speed required to perform the model inversion necessary to implement the feedback
linearization. This problem is solved since the developed neural network performs its
calculations using massive parallel processing.

PC{

(_-zc

C_yc

Command

Augmentation

Logic

[

P

Q

R

Attitude Orientation System

Command
Transformation

Attitude
Control

Ul

U2

Inverse

Model

using
Neural

Network

t" -r

_ AircraftJ-

$,$,

P,Q, R,_, q_,c_v,_z, U,V,W

Figure 4 from Kim & Calise paper.

Figure 11 - Command Augmentation System

The command augmentation system has both a command augmentation logic and an

attitude orientation system. The command augmentation logic is the outer loop
function which tracks pilot commands. The attitude orientation system is an airframe
stabilization system that accepts rate commands. The output of the attitude orientation

system is transformed into commanded aircraft body axis rotational accelerations,
which are used in an inverted model to calculate control surface deflections. The key

purpose of the neural network is to approximately invert the vehicle attitude dynamics.

Disk 000008 44
File: lif/wo/nasalfin3.do¢

NGT4-52401

By inversion, it is meant that given the desired angular accelerations, U_, determine the
desired control surface deflection.

To facilitate a representation of a mapping .that is less sensitive to altitude and Mach
number variations, the neural network is design to represent the inverse mapping of
plant dynamics from moment coefficients to control deflections, instead of from angular
accelerations to control deflections. This reduces network complexity and the effort
required in training. The results of the neural network in Figure 11 are the values for

effective rudder deflection 5r, effective elevator deflection 5e = (ShL + 5hR)/2 and the

differential tail deflection 5t = (ShL - 5hR)/2.

3.1.5 Neural-based F-15 Adaptive Flight Controller

The control laws defining pilot input U1,2,3to the control surface deflections 5hL, 5hR, and

5r and the design philosophy of Kim and Calise are the basis of the NASA neural-
based F-15 flight controller. NASA modified the neural network to model aerodynamic

stability derivatives rather than total aerodynamic coefficients. The control architecture
employs a single pre-trained neural network to represent the nonlinear aircraft
aerodynamics in the model inversion portion of the controller. The aircraft model used
is the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) aircraft.
The inversion performed is expressed in equations T4 from Totah's paper provided in
Appendix A of this report. The neural network estimates of the aerodynamic stability

derivatives are denoted by an overstrike such as Cz_,in the T4 equations.

In Totah's F-15 paper, the network structure consisted of two inputs Altitude and Mach,
20 processing elements in a single hidden layer, and 32 outputs corresponding to each
of the aerodynamic stability derivatives. The aerodynamic database consisted of an
entire set of coefficients for sets of Mach and altitude ranging from 0.3<M<1.2 at sea
level, to 0.6<M<2.0 at 50,000 feet.

Disk 000008 45
File: lif/wo/nasa/fin3.doc

NGT4-52401

3.2 Comparing Conventional Software and Neural Network Paradigms

The goal of this section is to evaluate which portions of the NASA V&V standard can be
augmented to include the evaluation of neural networks. There are a number of

standards for the formal testing of safety critical software. These formal test standards
are expressed under the subject of Verification and Validation (V&V). The Department
of Defense has its standard expressed in DoD-MIL-STD-2168, titled Oefense System
Software Quality Program." The IEEE standard is ANSI/IEEE Standard 1012-1986,
titled IEEE Standard for Software Verification and Validation." The NASA V&V
standard is provided in Appendix B of this report.

Since software systems control the any safety critical systems, formal software
evaluation has been an important topic for both public and private enterprises. These
software evaluation standards are well respected for there ability to field high quality
software.

The NASA standard is composed of the following sections:

1. Concepts and Definitions
2. Activities

3. V&V During the Software Acquisition Life Cycle
4. Independent Verification and Validation
5. Tools and Techniques.

3.2.1 Concepts and Definitions

The entire Concepts and Definitions section of the NASA V&V standard is as follows:

"Software Verification and Validation (V&V) is the process of ensuring
that software being developed or changed will satisfy functional and
other requirements (validation) and each step in the process of building
the software yields the right products (verification). The differences
between verification and validation are unimportant except to the
theorist; practitioners use the term V&V to refer to all of the activities that

are aimed at making sure the software will function as required.

V&V is intended to be a systematic and technical evaluation of software
and associated products of the development and maintenance
processes. Reviews and tests are done at the end of each phase of the
development process to ensure software requirements are complete and
testable and that design, code, documentation, and data satisfy those
requirements "

At this level, these definitions would apply to neural networks. Unlike conventional

software design and development which is based on an iterative procedure of
requirements definition, analysis, specification, implementation and testing, neural

Disk000008 46
File: lif/wo/nasa/fin3.doc

NGT4-52401

network based systems rely on training to formulate the control mechanism.
Verification and validation of such systems for safety properties is extremely hard due
to the lack of a complete system model. Because of this difficulty and a lack of
evaluation framework, some neural network developers feel that they are not required
to comply with the formal systematic and technical V&V evaluation. It is believed that
as neural network become used more and more for safety critical system

implementation, this attitude must change. Also, by providing this formal neural
network V&V framework, the old beliefs will change.

3.2.2 Activities

The next section of the NASA V&V standard is Activities, which involve testing and
reviews. Presentation of the neural network should be accomplished as a subset of

the total system reviews. Evidence required by these reviews will only be available in
the form of top level requirements. Neural networks are treated somewhat as a black
box with little internal details, thus code inspection is less effective.

The NASA standard provides the accepted definition of testing:

"Testing is the ()peration of the software with real or simulated inputs to
demonstrate that a product satisfies its requirements and, if it does not,
to identify the specific differences between expected and actual results.
There are varied levels of software tests, ranging from unit or element

testing through integration testing and performance testing, up to
software system and acceptance tests".

Neural networks can be tested according to this definition. Black box testing is
accomplished by generating test input data, executing the software, and observing the
results. As the standard states, the objectives of these tests are: 1) computational
correctness, 2) testing of boundary and extreme conditions, 3) state transition, 4) stress
testing, and 5) adequate error detection, handling, and recovery. These are clear
objectives for testing neural networks. Computational correctness can be evaluated
with respect to the desired output given a particular input. Statistical analysis can be
performed to evaluate performance characteristics, boundary conditions that produce
greater error, and degradation of performance. Goals of this analysis are to determine
robustness of the system and does it still produce meaningful results at boundary
conditions.

White box testing is not applicable for a neural network. In white box testing the
internal workings of the code are examined and tested. The neural network software

only provides the network structure and the threshold algorithms. The system is not
testable until it is trained.

Next, the NASA standard covers acquirer-approved/formal testing. At this level of
testing, the neural network is often embedded into the system. As a result, there
shouldn't be special consideration.

Disk 000008 47
File: lif/wolnasa/fin3.doc

NGT4-52401

3.2.3 Verification and Validation During the Software Acquisition Life Cycle

The NASA standard lists eight phases for the software acquisition life cycle. In each
phase there are V&V activities.

Software Concept and Initiation Phase
Goals of the phase are the same for conventional software and neural networks, but

the results will differ. The major goal is "to develop a concept of how the system is to
be reviewed and tested." Neural networks require different test cases, simulators, and
other test capabilities. The creation of training and testing data for a neural network is
a time consuming and costly process. It is extremely important to develop a sound
V&V concept since the complexities and unfamiliarities of neural networks can drive
cost and schedule overruns.

Software Requirements Phase

A preliminary version of an Acceptance Test plan should be developed. The
development of test beds, training data, and testing data started. Only top-level
requirements can be expressed, since a system model of the actual neural network can

not be expressed. It will be difficult to write testable requirements. The typical
Verification Matrix will not be applicable because of lack of system decomposition.

Software Architectural & Detailed Design Phase
The neural network developers must employ a set of evaluation tools to determine the
effectiveness of the neural network architecture, and evaluate training and test data.
These evaluation tools are statistical tools or system evaluation tools as described in

section 3.2.5. The V&V activity should include a review and understanding of these
analyses, completion of the Acceptance Test Plan, and participation in the Preliminary
and Critical Design Reviews. For the Software Architectural (Preliminary) and Detailed
Design Phases the neural network can not be expressed like conventional software.

The development of definitive specifications for any real-world software system using
conventional methods is difficult. A neural network system poses further challenge due
to the fact that almost nothing is assumed to be known about the contents of the

blackbox. The neural network learns and discovers its architecture and parameters of
the underlying system through training.

Software Implementation Phase

During this phase the V&V detailed test procedures are developed. These test
procedures should include the statistical evaluation tools included in section 3.2.5. The

traditional software development activities of code inspection and unit testing will be
replaced by the neural network training program, the developers evaluation of the
neural network, and resultant modifications. The development of detailed test

procedures should be supplemented by the development of a subset of the training
data to be used for V&V test data. Statistical analysis and boundary conditions

evaluations generated by the neural network developers should be thoroughly
understood in order to correctly select this V&V test training data.

Software Inteqration & Test; Software Acceptance & Delivery Phase-_

Disk000008 48
File: lif/wo/nasa/fin3.doc

NGT4-52401

The major V&V test and evaluation efforts occur in the Software Integration and Test
Phase and the Software Acceptance and Delivery Phase. These efforts adhere to the
standard, except for the fact that the test procedures will specify the evaluation of the
neural network.

Software Sustaining Engineering and Operations Phase

The Software Sustaining Engineering and Operations Phase is different for a neural
network than conventional software. Conventional software is inert; it does not change

as a function of time or use. If training continues during operation, neural networks can
become over trained and brittle. Therefore it is necessary to develop a sustaining

engineering program in the same manner that hardware is required to have a

sustaining engineering program.

Disk 000008 49

File: lif/wo/nasa/fin3.doc

NGT4-52401

3.2.4 Independent Verification and Validation (IV&V)

The use of an IV&V agent is necessary as a function of the safety-critical nature and
the complexity of the system. As there is an increase likelihood that the system will
effect human safety, that the result of this system will effect other systems, or the
complexity of the system increases, the neural network should be independently
evaluated by an IV&V agent.

3.2.5 Tools and Techniques

Tools that evaluate neural networks can be classified into two groups: 1) tools that
assist in the decisions for the development of the neural network system and 2) tools
that evaluate the performance of the neural network. The goal is to decrease both
system output error and system output error variability. The usefulness of neural

networks have motivated the implementation of many systems. Characteristics such as
fault and noise tolerance, and learning capability have attracted many engineers.
Unfortunately, the uncertainty of neural network output has not been addressed in
many implementations. In safety-critical systems, output error variability must be
evaluated.

Tools for the evaluation of neural network development:

Design of Experiments
Design of experiments is an organized series of tests in which the objective of each of
the individual tests is to determine how results will vary when a particular input is
changed. The procedure in performing a design of experiments is the following: 1)
define the problem, 2) define measurable objectives, 3) choose the independent
variables or factors, 4) choose the levels of the factors, and 5) run the experiment and
analyze the results. The goal of the entire experiment is to obtain information about

what combination of design factors provides the best results. Design factors for a
neural network are noise in the training data, the network architecture, the time in which
the training is stopped and noise in the test data.

The Taguchi Method

The Taguchi method is another analysis procedure, like the design of experiments that
has been used successfully in improving manufacturing products and processes. It has

been used successfully to generally evaluate neural networks (Peterson, 1995). As a
conclusion Peterson indicates that "since relatively little is known about the capabilities
and characteristics of neural networks, controlled experiments under varying
circumstances must be run since the outcome of a single experiment can be
misleading'.' The following presents some of guidelines for the design and construction
of neural networks resulting from this paper: 1) Use a training sample that is as free of
noise as possible, 2) use dense training data, 3) for best error control, use networks
with two hidden layers, 4) for best smoothness of the approximating function, use one
hidden layer, and 5) stop training when the error on the testing data begins to rise.

Disk000008 50
File: lif/wo/nasalfin3.doc

NGT4-52401

Tools that eva/uate the performance of the system:

Statistical Analysis
Statistics is used to evaluate the performance of neural networks.
definitions are fundamental:

The following

Accuracy-- the difference between the average of the values and the true
value.

Range -- the difference between the high and low values:

where
R = Xh - Xi

X, = the highest measurement, and Xt = the lowest measurement.

Mean -- the sum of all values divided by the number of values:

where
= (X1 + X2 + X3 + ... Xn)/n

X1, etc. = the value of each individual value
n = the number of values.

Standard deviation -- the square root of the sum of the squares of the
differences between the individual values and the mean divided by the number
of values.

where
s = q T. (X - ,_)2 / (n - 1)

X = the value of the individual value
X = the mean
n = the number of values.

Variance -- is the square of the standard deviation (s2)

Mean squared error--the variance of the error. The mean square error is used

for many data modeling techniques including neural network modeling. The use
of the mean square error in data modeling is known as the least mean squares
(LMS) method. It attempts to optimize the fit of a model with respect to the
training data by minimizing the square of the residuals. This method is well

suited for uniformed training data sets. Unfortunately, neural network training
set commonly are non-uniformed. Using LMS, a small sub-set of gross errors or
outliers can influence the resulting training set unfavorably and cause
inaccuracies. As developed in the paper, " Robust Error Measure for

Supervised Neural Network Learning with Outliers'; (Liano, 1996) the mean log
squared error (MLSE) can eliminate this inaccuracy.

Disk 000008 5 1
File: lif/wo/nasa/fin3.doc

NGT4-52401

Fault Tolerance

Fault tolerance refers to the fact that no matter how well a system is designed and
tested, faults will remain in the delivered system. Neural networks must be designed to
be fault tolerant if their application requires high reliability. Aircraft are subjected to
extreme reliability requirements. The reliability requirement for a passenger aircraft is
extremely high: "the probability of catastrophic failure during a 10-hour flight should be
less than 10"9/hour '' (Rushby, 1993). Such high reliability requirements force the

development of redundant systems since the hardware can not live up the such high
standards. Triple redundancy with voting is proposed in the paper titled "Complete and
Partial Fault Tolerance of Feedforward Neural Nets" (Phatak, 1995).

Disk 000008 52
File: lif/wo/nasa/fln3.doc

NGT4-52401

3.3 Verification and Validation Program for the Neural-based F-15 Adaptive
Flight Co n troller

The evaluation approach described in this section will be tailored to the current

development maturity of the subject test article: the neural-based F-15 adaptive flight
controller engineered at Ames Research Center.

3.3.1 V & V During the Software Acquisition Life Cycle

It is assumed that the subject neural network is in the System Demonstration Phase of
the System Acquisition Life Cycle. As shown in Figure 12, the subject system is
beyond the Concept Phase, but not mature enough to enter the System Production
Phase.

_" Phases • "--

Concept Dem/Val EMD Production

Expl & Der_ 1 ', O & S
I I I

NI'% I =

uevempmen[, ,

Manufacturing

Verification

Deployment

Operations

gupport & Training

Disposal

, , i = Produdloo

=

m

I I ! _
l}emtM = r)evPh'_mpnf TiD_"--_l-i, id_leH_ Tl,,c_t

! •

, m , Denlt_e,,t
r-f-! !

!

I
i

I I !

I I I

1 I 1
I I !

t j ' ISuppM & Tr=InI_,,I l

I I I

I I I

,,,'.... . ' : DIsp__!

From MIL-STD-499B Systems Engineering

Figure 12 - System Acquisition Lifecycle

System development and evaluation efforts being taken are readying this system for
the Production Phase. In the Production Phase, a contractor would incorporate this
system into the avionics subsystem of a production line aircraft. For this reason it is
very important that more formal system evaluation be conducted. More importantly,

Disk0o00o8 53
File: lif/wolnasa/fin3.doc

NGT4-52401

during the upcoming flight tests, the system will have influence over the safety of the
pilot and actual flight vehicle. So, as the neural-based adaptive flight controller and the
F-15 avionics system is modified for flight worthiness, a more formal test effort is
required.

Software Concept and Initiation Phase

Everything that is required for conventional software during this phase is applicable to
neural networks. Both the F-15 avionics software that is changed to accommodate and
interface with the neural network and the neural network require all aspects of this first
phase. The first activity, the development of a "concept of how the system is to be
reviewed and tested" is required. The evaluation to determine top level test cases,
requirements of simulators or modification to existing simulators, and in the case of the
neural network, test case data. This top-level evaluation activity also helps in the
planning of an adequate V&V concept and plan and should be in sufficient detail to
estimate cost, schedule, and test complexities. Since this neural network has been
evaluated in a simulated test environment, important information from previous testing
can assist in this top-level evaluation.

Software Requirements Phase
The V&V activities applicable are:

1) analyzing software requirements to determine if they are consistent with,
and within the scope of, system requirements.

2) assuring that the requirements are testable and capable of being satisfied.
3) creating a preliminary version of the Acceptance Test Plan, including a

verification matrix, which relates requirements to the tests used to
demonstrate that requirements are satisfied.

4) beginning development of test beds and test data generators.
5) the phase-ending Software Requirements Review (SRR).

Both the F-15 avionics software that is changed to accommodate and interface with the
neural network and the neural network software require all aspects of the Software
Requirements Phase.

In addition, the V&V of the neural network will require further evaluation since it is
partially non-deterministic software. In conventional software the basis of evaluation is
a set of requirements. In conventional software, the requirements and behavior are
both certain; a given input will result in a precisely specified output. For a neural
network, there usually is a degree of uncertainty about what the output will result for a
given input. The basis of evaluation for the neural network therefore should be a set of
requirements, a set of constraints, and a set of goals that specify expected behavior.
These set of requirements should be expressed in a system specification and reviewed
at the SRR.

D,skO00008 54
File: lif/wo/nasa/fin3.doc

NGT4-52401

Software Architectural & Detailed Design Phase
During the design phases, PDR and CDR, the Acceptance Test Plan is expected to be
completed and the system design will be expressed in both the system design
specifications and the design reviews. During this period, the establishment and
evaluation of training data should take place. It is very important that this training data
represent the actual data the network will experience during flight demonstration. In
conditions of rapid change, a greater volume of test cases are required.

Software Implementation Phase
During the Software Implementation Phase, .the development of Detailed Test
Procedures is required. Unit testing of the conventional F-15 interface software is
required. The neural network training data is divided into two sets; one set for training
(80%) and one set for testing (20%). During neural network training, potential problems
are analyzed, such as, the identification of outliers, influential subsets and collinearities
(Peterson 1993). Outliers are data points that are far removed from the rest of the
data. Influential subsets are data points or subsets that could provide more than their
share of influence on the outcome of the training process. Collinearities are situations
in which the values of one feature are linear combinations of the values of other
features. These problems will skew statistical_evaluations.

Software Inteqration and Test Phase

During this phase, the actual Detailed Test Procedures are conducted, first using a
simulate F-15 and then the actual F-15. The test cases should be identical, so
correlation of output can be analyzed. Using a simulated F-15, tests of the F-15
interface software and the neural network are conducted. The Detailed Test

Procedures are based on the system requirements and goals. The neural network
tests should evaluate the following general characteristics:
1) safely -- there is no circumstance where the system produces output that could

cause harm to the pilot or aircraft.
2) system error -- statistical estimation of error is estimated and acceptable.
3) sensitivity -- the output is properly sensitive to the inputs.
4) boundary -- the boundary of acceptable input is well understood and input is

restricted within the boundary.
5) performance -- near the boundary of acceptable performance, the performance

degradation is gradual.
6) robustness -- the system continues to provide useful results even when some inputs

are missing or estimated.

Disk 000008 55
File: lif/wo/nasa/fin3.doc

NGT4-52401

4.0 Conclusions

The principal accomplishments of this project were 1) guidance in the selection of
artificial intelligence methods to develop advance aircraft automation systems, and 2) a
formal methodology to evaluate neural networks. Both topics are very current topics in
the application of artificial intelligence in aircraft automation. The significant
contribution of both accomplishments was greater use of the power of AI to address
real world problems faced by engineers in the aerospace industry developing aircraft
automation systems.

Guidance in the selection of AI methods to develop aircraft automation systems was
expressed in the form of a relationship matrix. The matrix listed AI methods on the top
and aircraft automation applications which were suitable candidates for AI
implementation on the left. The matrix was a product of an extensive library search
that was interdisciplinary in nature. Over one hundred journal articles, and ten books
were read to assess AI and aircraft automation. Total quality management (TQM)
methodology was performed to classify aircraft automation and AI methods. This
matrix will be useful to a manager faced with the task of meeting systems requirements
for the modification of an existing cockpit system or for the development of a new
automated cockpit. The matrix will provide a starting point for an informed decision
when selecting tools to implement aircraft automation.

The second problem addressed by this report was the development of a formal
methodology to evaluate neural networks. This part of the report resulted from the
initial feasibility report in which the evaluation of neural networks was a good candidate

for further research. The approach of starting with the NASA software quality
assurance policy and using the methods that are recommended was a starting point for
the development of an approach to V&V neural networks. Neurocomputing has been

slowly evolving as a mainstream tool through its utilization over the years. As system
developers acquire more and more confidence in neural network technology, neural
networks experience greater use. This comprehensive V&V approach provided the
necessary evaluation methods and tools to use neural networks in safety critical
systems.

This project accomplished the lifelong learning benefit of a interdisciplinary/
multidimensional project. This project allowed the author to study the fields of artificial
intelligence, software engineering, engineering and production management, and
aerospace engineering as they apply to aircraft automation. The multidimensional
aspect was found in the need to work with the university resources and the NASA
project personnel on real world problems. This was excellent preparation for the
challenges that will be faced in the work place, with it's importance on integrated
product development.

Disk000008 56
File: lif/wo/nasa/fin3.doc

NGT4-52401

5.0 Future Recommendations

It is recommended to develop a NASA Web site to disseminate the matrix information
contained in the Aircraft Applications vs. AI Methods Matrix. In addition, it is

recommended that this Web site be used to encourage other aerospace managers to
contribute information about their experience with AI applications. It is felt that even
through the Lockheed Corp. had a contract to develop the Pilot's Associate, other
companies like McDonald-Douglas, and Northrop-Grumman were also very active in the
design and implementation of prototype systems. This added information would be
valuable in enhancing the matrix with additional references.

The second recommendation is to develop an Acceptance Test Plan and Detailed Test
Procedures for the evaluation of the neuro-based F-15 flight controller. Test and
evaluation planning should address performance, functional and design requirements
with appropriate quantitative criteria, test events, scenario descriptions, resource
requirements, special test facilities, and test limitations. Test and evaluation efforts

should provide an assessment of risks and verification of the technical performance
objectives.

Disk 000008 57
File: lif/wo/nasa/fin3,doc

NGT4-52401

Appendix A: Derivation of the Aerodynamic Stability Equations

Disk 000008 58
File: lif/wo/nasa/fin3,do¢

NGT4-52401

The following derivation is from J. J. Totah paper titled "An Examination of Aircraft
Aerodynamic Estimation Using Neural Networks", SAE Technical Paper Series 952036,
1995

P, --,L -p (a.])

gIK' + (_---_ q (A2)

o,=(¢.-,v,.,) (vo+) -
. ,-f

(3 N ,_ k. S)
R,=, _- r.tl" (V--'-o+ T_ r (A.3)

K, =t.K 2 (A.4)

K; = t,K, (a.5)

-mV, (A6)
t, _S_z"

mV, (A.7)

4.6
K: =K, =_ (A.8)

Iso

t,o = 2.4 sec (A.9)

13

_, = Pc +(_sin_+R, cos_)tan®

@, =-Q, cos • - R, sin

_, = -Q, sin • + R, cos
_. tan(3

"r2

., =K (* ,)+,¢,(®,,)
_'k.s. _)

U2=

9.2
K_, = Kpe = Kpv =

l .U

t, = 0.8 sec

Kt,¢:
, K_,: = K.,,, = K,_..-

-" 2

1"4

P, = U, -U3sinO- _Ocos¢b (A.19)

= U 2 cosO - t_J)sin O + U3 sin OcosO

+_U_cosOcosO- _E)sin_sin® (a.20)

R, = U3cosOcosO - U:siz_ - OCcosO

-q_,sinOcosO-q_E)cosOsiaO (A.21)

8, = b, b5 b6 M, (A.22)

+<,.)
1:,I; - I_:

-" _Sb

(A.10) b2 =0

(A.11) I,:(_",-_.,..)+I,(_,-_,,,1

(A. 12) _ bs = I,I; - I_,:

_Sb

b,=0

(A.13) C,,, _'S_
b5 ---

I,
(A.14)

b_=0

,,(e,,
(A.15) b7 =

I, I; - l,x 2

(A. 16) _Sb

b_=0

(A.17) 1.,(_,, __,£)+1.(_., __.,.1

(A. 1,_) b9 = 1,1, - 1, 2 ' (A. 3 l)

_ Sb

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

_)iskooooo8 59
File: lif/wo/nasa/fin3 doc

NGT4-52401

, I[pq,:.,(L.- _',+.,,)-I+
' -""- ":IkqrI':-',',".elJ

SbI C',,,fl+2(Uo +u)('C,,,p+'C,,,r +

' _sbz,<,_+2(Uo+,)(_,.p+_,r (a.32)

,,,,,-_{[-r,,(,,-,,)-,o(,,_-;)]+
Y

- u_ -]}

-- --]I(A'33iL2(_,; +u) C,..q+c,.,. '5,

,
N'=I.,,I:-I.=2 LLpq(l..,l: -I2-I= _) J

SbI _,_+2(U-o+U)(_,p+_,r +

Fmuadons of Mouon

, iipq,.,,,,+,,;]P-u,-_==LLq"('7-_,i.+<= +

! rqp+. _ (<.,,+<.,-)+1
sbI] 2(Uo* u) / *

ii LC,,+<,_,+c.,_.+c.,_.j
i Fqf)+._,_,,I=t'o+")(_""+_"r)+]I<"")

I _ kC,ao+c, a,+c,, a, +c,,.a,jj

o=_{Fr,'(',-',)-'o(,"-")]"

c.. o+-.))-c..a+

_" C,._llh (A.36)
[T(u_ ._C.,q + .,5, + c,.,_,5,

,
r- I fl, - I.,== [kpq(I, ly _ I.'- I= 2) J "

rq_,fl+ . b u)(Ct, p+Cl, r)+]+gSbI,=[2(Uo +

LC,,.a. +q,,a, +c,,& +q,,a,j :
i

gSbI. C"'_+2(Uo+u)(C"'p+C"")+ i
(A.37) i

.c.,<+c._,+r.:.._,+c..._.jj ---"I
!
I

I
u = -gsin®cos® o +rv+ i

!

s q'(u+.) _c,.a+ I

.. -_L<_+q_" (A.38)
f' = gsin _cos® o -(U o +u)r+pw+

S[C,:fl+] (A.39)T,LC,/<+c,,,a,+q,<,+c,,a,
w =-gsin®sinOo +(Uo +u)q-pv+

"Cz" (U o + u) + C'z"a + (A

.q,.a,+q, a_

Disk 000008 60
File: lif/wo/nas_ fin3.doc

NGT4-52401

Appendix B: NASA Verification and Validation of Software
Systems

Disk 000008 6 1
File: lif/wo/nasa/fin3.doc

NGT4-52401

The followinq is Section V of the NASA Software Quality Assurance
Standard

V. VERIFICATION AND VALIDATION

A. Concepts and Definitions

Software Verification and Validation (V&V) is the process of ensuring that software
being developed or changed will satisfy functional and other requirements (validation)
and each step in the process of building the Software yields the right products
(verification). The differences between verification and validation are unimportant
except to the theorist; practitioners use the term V&V to refer to all of the activities that
are aimed at making sure the software will function as required.

V&V is intended to be a systematic and technical evaluation of software and associated
products of the development and maintenance processes. Reviews and tests are done
at the end of each phase of the development process to ensure software requirements
are complete and testable and that design, code, documentation, and data satisfy
those requirements.

B. Activities

The two major V&V activities are reviews, including inspections and walkthroughs, and
testing.

1. Reviews, Inspections, and Walkthroughs

Reviews are conducted during and at the end of each phase of the life cycle to
determine whether established requirements, design concepts, and specifications have
been met. Reviews consist of the presentation of material to a review board or panel.
Reviews are most effective when conducted by personnel who have not been directly
involved in the development of the software being reviewed.

Informal reviews are conducted on an as-needed basis. The developer chooses a

review panel and provides and/or presents the material to be reviewed. The material
may be as informal as a computer listing or hand-written documentation.

Formal reviews are conducted at the end of each life cycle phase. The acquirer of the
software appoints the formal review panel or board, who may make or affect a go/no-go
decision to proceed to the next step of the life cycle. Formal reviews include the
Software Requirements Review, the Software Preliminary Design Review, the Software
Critical Design Review, and the Software Test Readiness Review.

An inspection or walkthrough is a detailed examination of a product on a step-by-step
or line-of-code by line-of-code basis. The purpose of conducting inspections and

walkthroughs is to find errors. The group that does an inspection or walkthrough is

composed of peers from development, test, and quality assurance.

Disk 000008 62
File: lif/wolnasa/fin3 doc

NGT4-52401

2. Testing

Testing is the operation of the software with real or simulated inputs to demonstrate
that a product satisfies its requirements and, if it does not, to identify the specific
differences between expected and actual results. There are varied levels of software
tests, ranging from unit or element testing through integration testing and performance
testing, up to software system and acceptance tests.

a. Informal Testing

Informal tests are done by the developer to measure the development progress.
"Informal" in this Case does not mean that the tests are done in a casual manner, just
that the acquirer of the software is not formally involved, that witnessing of the testing is
not required, and that the prime purpose of the tests is to find errors. Unit, component,
and subsystem integration tests are usually informal tests.

Informal testing may be requirements-driven or design-driven. Requirements-driven or

black box testing is done by selecting the input data and other parameters based on
the software requirements and observing the outputs and reactions of the software.
Black box testing can be done at any level of integration. In addition to testing for
satisfaction of requirements, some of the objectives of requirements-driven testing are
to ascertain:

Computational correctness.

Proper handling of boundary conditions, including extreme inputs and conditions
that cause extreme outputs.

State transitioning as expected.

Proper behavior under stress or high load.

Adequate error detection, handling, and recovery.

Design-driven or white box testing is the process where the tester examines the internal
workings of code. Design- driven testing is done by selecting the input data and other

parameters based on the internal logic paths that are to be checked. The goals of
design-driven testing include ascertaining correctness of:

All paths through the code. For most software products, this can be feasibly done
only at the unit test level.

Bit-by-bit functioning of interfaces.

Size and timing of critical elements of code.

Disk0OOOO8 63
File: lif/wo/nasa/fin3.do¢

NGT4-52401

b. Formal Tests

Formal testing demonstrates that the software is ready for its intended use. A formal

test should include an acquirer-approved test plan and procedures, quality assurance
witnesses, a record of all discrepancies, and a test report. Formal testing is always
requirements-driven, and its purpose is to demonstrate that the software meets its
requirements.

Each software development project should have at least one formal test, the
acceptance test that concludes the development activities and demonstrates that the
software is ready for operations.

In addition to the final acceptance test, other formal testing may be done on a project.
For example, if the software is to be developed and delivered in increments or builds,

there may be incremental acceptance tests. As a practical matter, any contractually
required test is usually considered a formal test; others are "informal."

After acceptance of a software product, all changes to the product should be accepted
as a result of a formal test. Post acceptance testing should include regression testing.
Regression testing involves rerunning previously used acceptance tests to ensure that
the change did not disturb functions that have previously been accepted.

C. Verification and Validation During the Software Acquisition Life Cycle

The V&V Plan should cover all V&V activities to be performed during all phases of the
life cycle. The V&V Plan Data Item Description (DID) may be rolled out of the Product

Assurance Plan DID contained in the SMAP Management Plan Documentation
Standard and DID.

1. Software Concept and Initiation Phase

The major V&V activity during this phase is to develop a concept of how the system is
to be reviewed and tested. Simple projects may compress the life cycle steps; if so, the
reviews may have to be compressed. Test concepts may involve simple generation of
test cases by a user representative or may require the development of elaborate
simulators and test data generators. Without an adequate V&V concept and plan, the
cost, schedule, and complexity of the project may be poorly estimated due to the lack
of adequate test capabilities and data.

2. Software Requirements Phase

V&V activities during this phase should include:

Analyzing software requirements to determine if they are consistent with, and within
the scope of, system requirements.

Assuring that the requirements are testable and capable of being satisfied.

Disk 000008 64
File: lif/wo/nasa/fin3doc

NGT4-52401

Creating a preliminary version of the Acceptance Test Plan, including a verification
matrix, which relates requirements to the tests used to demonstrate that

requirements are satisfied.

Beginning development, if needed, of test beds and test data generators.

The phase-ending Software Requirements Review (SRR).

3. Software Architectural (Prefiminary) Design Phase

V&V activities during this phase should include:

Updating the preliminary version of the Acceptance Test Plan and the verification
matrix.

Conducting informal reviews and walkthroughs or inspections of the preliminary
software and data base designs.

The phase-ending Preliminary Design Review (PDR) at which the allocation of
requirements to the software architecture is reviewed and approved.

4. Software Detailed Design Phase

V&V activities during this phase should include:

Completing the Acceptance Test Plan and the verification matrix, including test

specifications and unit test plans.

Conducting informal reviews and walkthroughs or inspections of the detailed
software and data base designs.

The Critical Design Review (CDR) which completes the software detailed design

phase.

5. Software Implementation Phase

V&V activities during this phase should include:

Code inspections and/or walkthroughs.

Unit testing software and data structures.

Locating, correcting, and retesting errors.

Development of detailed test procedures for the next two phases.

6. Software Integration and Test Phase

Disk000008 65
File: lif/wolnasa/fin3.doc

NGT4-52401

This phase is a major V&V effort, where the tested units from the previous phase are
integrated into subsystems and then the final system. Activities during this phase
should include:

Conducting tests per test procedures.

Documenting test performance, test completion, and conformance of test results
versus expected results.

Providing a test report that includes a summary of nonconformances found during
testing.

Locating, recording, correcting, and retesting nonconformances.

The Test Readiness Review (TRR), confirming the product's readiness for
acceptance testing.

7. Software Acceptance and Defivery Phase

V&V activities during this phase should include:

By test, analysis, and inspection, demonstrating that the developed system meets its
functional, performance, and interface requirements.

Locating, correcting, and retesting nonconformances.

The phase-ending Acceptance Review (AR).

8. Software Sustaining Engineering and Operations Phase

Any V&V activities conducted during the prior seven phases are conducted during this
phase as they pertain to the revision or update of the software.

D. Independent Verification and Validation

Independent Verification and Validation (IV&V) is a process whereby the products of
the software development life cycle phases are independently reviewed, verified, and

validated by an organization that is neither the developer nor the acquirer of the
software. The IV&V agent should have no stake in the success or failure of the
software. The IV&V agent's only interest should be to make sure that the software is
thoroughly tested against its complete set of requirements.

The IV&V activities duplicate the V&V activities step-by-step during the life cycle, with

the exception that the IV&V agent does no informal testing. If there is an IV&V agent,
the formal acceptance testing may be done only once, by the IV&V agent. In this case,
the developer will do a formal demonstration that the software is ready for formal
acceptance.

E. Techniques and Tools

Disk 000008 66
File: lif/wo/nasa/fin3.doc

NGT4-52401

Perhaps more tools have been developed to aid the V&V of software (especially
testing) than any other software activity. The tools available include code tracers,
special purpose memory dumpers and formatters, data generators, simulations, and
emulations. Some tools are essential for testing any significant set of software, and, if
they have to be developed, may turn out to be a significant cost and schedule driver.

An especially useful technique for finding errors is the formal inspection. Formal
inspections were developed by Michael Fagan of IBM. Like walkthroughs, inspections
involve the line-by-line evaluation of the product being reviewed. Inspections, however,
are significantly different from walkthroughs and are significantly more effective.
Inspections are done by a team, each member Of which has a specific role. The team
is led by a moderator, who is formally trained in the inspection process. The team
includes a reader, who leads the team through the item; one or more reviewers, who
look for faults in the item; a recorder, who notes the faults; and the author, who helps
explain the item being inspected.

This formal, highly structured inspection process, has been extremely effective in finding

and eliminating errors. It can be applied to "any,product of the software development
process, including documents, design, and code. One of its important side benefits has
been the direct feedback to the developer/author, and the significant improvement in
quality that results.

Disk 000008 67
File: lif/wo/nasa/fin3,do¢

NGT4-52401

REFERENCES

A:llen, J. F., 1984 "Towards a General Theory of Action and Time", Artificial Intelligence
23 (2)_'lDp.123-154.

Aznalbedi, R., and F. Deblon, 1992 "Cognitive Modeling of Fighter Aircraft Process
Control: a Step Towards an Intelligent On-board Assistance System", International
Journal of Man-Machine Studies, vol. 36, pp. 639-670.

Astrorn, K.J. and T.J. McAvoy, 1992. "Intelligent Control: An Overview And Evaluation",
Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, ed. White &
S_ge, Van Nostrand Reinhold, New York, New York, pp. 3-34.

Ba_, J. W. St., 1992. "System Status: the Diagnostic Edge of the Pilot's Associate",
ISA_ j:_. 19-29.

Caudm, M., 1989. "Neural Network Primer: Part I", AI Expert, Feb. 1989

Chin H. H., !992. "Knowledge-Based System Techniques For Pilot Aiding," Control

and Dynamic System- System Performance Improvement and Opt'mizafion Techniques
and Their Applications in Aerospace Systems, pp. 69-174.

DARPA Neural Network Study (1988). Alexandria, VA: AFCEA International Press.

Funk, K. H., and J. H. Lind, 1992. "Agent-Based Pilot-Vehicle Interfaces: Concept and
Prototype", IEEE Transactions on System, Man, and Cybernetics, Vol. 22, No. 6, pp.
1309-1322, Nov./Dec. 1992.

Gonzalez, A. J., and D. D. Douglas, 1993 "The Engineering of Knowledge-Based
Systems", Prentice Hall, Englewood Cliffs, New Jersey 07632.

Govindaraj, T., and C. M. Mitchell, 1994. "Operator Modeling in Commercial Aviation:

Cognitive Models, Intelligent Displays, and Pilot's Assistants, NASA-CR 198609,
Georgia Institute of Technology, Atlanta, GA.

Jorgensen, C.C., 1996. "NASA News Briefs", NASA Tech Briefs, pp. 24-26, Sept. 1996.

Jorgensen, C.C., and C. Schley, 1990 "A Neural Network Baseline Problem for Control

of Aircraft Flare and Touchdown", Neural Networks for Control, ed. Miller, Sutton, and
Werbos, MIT Press, pp. 403-425.

Kim, B. S. and A. J. Calise, 1994. "Nonlinear Flight Control Using Neural Networks",
AIAA Paper 94-3646-CP.

Kim, K. and E.B. Bartlett, (1994)"Validation of a Nuclear Power Plant Fault-Diagnostic
System Using Artificial Neural Networks", Paper presented at the Artificial Neural
Networks in Engineering Conference; St. Louis, Missouri.

Disk 000008 68
File: lif/wo,'nasa/fin3.doc

NGT4-52401

Kosko, B., 1992. "Neural Networks and Fuzzy Systems: a Dynamic Systems Approach
To Machine Intelligence", Prentice-Hall, Englewood Cliffs, New Jersey.

Krobusek, R. D., R. M. Boys, and K. D. Palko, 1989. "Levels of autonomy in a tactical
electronic crewmember," J. Emerson, J. Reising, R. M. Taylor, and M. Reinecke, Eds.,
WRDC-TR-89-7008. Wright-Patternson Air Force Base, OH: Wright Research and
Development Center, pp. 124-132.

Llano, K., 1996. "Robust Error Measure for Supervised Neural Network Learning with
Outliers", IEEE Transactions on Neural Networks, Vol. 7, No. 1, pp. 246-250.

Menon, P. K. A., 1993. "Nonlinear Command Augmentation System for a High
Performance Fighter Aircraft," Proceedings of AIAA Guidance, Navigation and Control
Conference, Monterey, CA, pp. 720-730.

Mitchell, C. M., 1994. "Human-Centered Design of Human-Computer-Human Dialogs in
Aerospace Systems, NASA-CR-197379, 31 July 1994.

Nagel, D. C., 1988. "Human Error In Aviation Operations", Human Factors in Aviation,
San Diego, Academic, pp. 263-303.

Noor, A. K., and C. C. Jorgensen, 1996. "A Hard Look At Soft Computing", Aerospace
America, pp. 34-39, September, 1996.

Onken, R., 1995. "Functional Development and Field Test of CASSY - a Knowledge-
Based Cockpit Assistant System", Paper presented at the Mission Systems Panel of
AGARD; NASA AMES Research Center, California.

Owre, S., J. Rushby, N. Shankar, & F. von Henke, 1995. "Architectures: Prolegomena
to the Design of PVS", IEEE Transactions on Software Engineering, Vol. 21, No. 2, pp.
107-125.

Painter, J. H., E. Glass, G. Economides, & P. Russell, 1994. "Knowledge-Based
Processing for Aircraft Flight Control", NASA-CR 194976, Texas A&M University,
College Station, Texas, NASA-CR-194976.

Peterson, G. E., 1993. "A Foundation for Neural Network Verification and Validation",

in Science of Artificial Neural Networks II, Dennis W. Ruck, Editor, Proc. SPIE 1966, pp.
196-207.

Peterson, G. E., D. C. St. Clair, S. R. Aylward, W. E. Bond, 1995. "Using Taguchrs
Method of Experimental Design to Control Errors in Layered Perceptrons", IEEE
Transactions on Neural Networks, Vol. 6, No. 4, pp. 949-961.

Phatak, D. S., & I. Koren, 1995. "Complete and Partial Fault Tolerance of Feedforward
Neural Nets", IEEE Transactions on Neural Networks, Vol. 6, No. 2, pp. 446-456.

Rouse, W. B., N. D. Geddes, & J. M. Hammer, 1990. "Computer-aided Fighter Pilots",
IEEE Spectrum, pp. 38-41.

Disk 000008 69
File; lif/wo/nasa/fin3.do¢

NGT4-52401

Rushby, J. M., & F. yon Henke, 1993. "Formal Verification of Algorithms for Critical
Systems", IEEE Transactions on Software Engineering, Vol. 19, No. 1, pp. 13-23.

Russell, S., P. Norvig, 1995. "Artificial Intelligence: A Modern Approach", Prentice Hall,
New Jersey.

Shelnutt, J. B., 1989. "Pilot vehicle interface management," in The Human-Electronic

Crew: Can They Work Together? J. Emerson, J. Reising, R. Mo Taylor, and M.
Reinecke, Eds., WRDC-TR-89-7008. Wright-Patternson Air Force Base, OH: Wright
Research and Development Center, pp. 104-107.

Steck, J. E., K. Rokhsaz, & S. Shue, 1996, "Linear and Neural Network Feedback for
Flight Control Decoupling", IEEE Control Systems, pp. 22-30, August 1996

Steinberg, M., 1992. "Potential Role of Neural Networks and Fuzzy Logic in Flight
Control Design and Development", Paper presented at the 1992 Aerospace Design
Conference; Irvine, California.

Sucki, G. J., W. L. Persons, & G. L. Johnson, 1994. "The Safety Implications of
Emerging Software Paradigms", Paper presented at the International Federation of
Automatic Control Emerging Intelligent Control Technologies, Hong Kong.

Disk 000008 70
File: lif/wo/nasa/fin3.doc

NGT4-52401

Totah, J. J., 1996. "Simulation Evaluation of a Neural-Based Flight Controller", AIAA 96-
3503.

Totah, J., 1995. "An Examination of Aircraft Aerodynamic Estimation Using Neural
Networks", SAE Technical Paper Series 952036.

Wen, W,, & J. Callaham, 1996. "Neuralware Engineering: Develop Verifiable ANN-
based Systems", Technical Report, NASA/WVU Software Research Laboratory, Paper
presented at the/EEE/ntemationa/Joint Symposia on Intelligence and Systems;
Rockville, Maryland, pp. 60-66, 4-5 November 1996.

Werbos, P. J., 1990. "Overview Of Designs and Capabilities", Neural Networks for

Control, ed. Miller, Sutton, and Werbos, MIT Press, pp. 59-66.

Werbos, P. J., 1992. "Neurocontrol and Supervised Learning: An Overview and

Evaluation", Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches,
ed. White & Sofge, Van Nostrand Reinhold, New York, New York, pp. 65-90.

Wilber, G. F., 1989. "Simulating intelligent missions." Defense Computing, vol. 2, no. 6,
pp. 43-47 Nov./Dec. 1989.

Wilber, R., 1989. "Expert systems aid on-board mission management," Defense
Computing, vol. 2, no. 1, pp. 27-30 Jan./Feb. 1989.

White, D. A., A. Bowers, K. Iliff, and J. Menousk, 1992. "Flight, Propulsion, and Thermal
Control of Advanced Aircraft and Hypersonic Vehicles", Handbook of Intelligent Control:
Neural, Fuzzy, and Adaptive Approaches, ed. White & Sofge, Van Nostrand Reinhold,
New York, New York, pp. 65-90.

Disk 000008 7 1
File: lif/wo/nasa/fin3doc

NGT4-52401

Glossary of Technical Terms

Algorithm. A set of step-by-step instructions for accomplishing a task.

Angle of attack. The acute angle between the chord of an airfoil, and a line
representing the undisturbed relative airflow.

Angular acceleration. Rotational acceleration of an aircraft about a single or multiple
axes.

Antecedent. A condition (premise, evidence) in a rule/logical statement.

Approximate reasoning. Inexact reasoning employing techniques such as probability
theory, fuzzy logic, or certainty factors.

Artificial Intelligence. A field of study in computer science that pursues the goal of
making a computer reason in the same manner as humans.

Associative networks. A method of knowledge representation using graphs made up
of nodes and arcs, where the nodes represent objects and the arcs the relationship
between the objects.

Automatic pilot. A control mechanism which initiates signals to the control surfaces of

an aircraft to maintain a steady and preset course and attitude, without assistance from
the human pilot. Also called copilot or autopilot.

Avionics. A field of applied research in which electronic devices and computers are
adapted to use in aviation. Coined from aviation electronics.

Backward chaining. An inference control strategy. In a rule-based system, backward
chaining begins with a goal and tries to prove it to be true by proving the premises of a
rule that contains the goal as its conclusion.

Best-first search. Search technique that uses knowledge about the problem to guide
the search.

Binary tree. A tree in which each node has only two children.

Binding. The process of assigning a value to a variable.

Blackboard. A system where several independent agents or knowledge sources share
information in a common working memory.

Blind search. A search technique that does not make use of knowledge to search the
problem space. It will find a solution, if it exists, but at a cost of time due to the
exhaustive nature of the search.

Disk 000008 72
File: lif/wo/nasa/fin3.doc

NGT4-52401

Breadth'first search. A search technique that looks for a solution along all of the

nodes on one level of a problem space before considering nodes at the next lower
level.

Case-based reasoning. Theory in AI that proposes that the elements of human
memory are based on specific historical events or cases. A problem is compared to a
set of previous cases and the case most similar to the problem is used as the basis for
solving the problem.

Causal reasoning. Reasoning based on cause-effect relationships between the
problem's objects.

Certainty. Degree of confidence or belief in a fact or relationship.

Certainty factor. A number assig.ned to a fact or rule to indicate the confidence one
has in the fact or in the rule's relationship.

Cognition. The mental process of knowing. _aving knowledge.

Cognitive science. The study of the human problem-solving processes.

Cognitive modeling. Models of human reasoning, model of how the human mind
works, a computer program that models human reasoning.

Competence model. A model of human reasoning sufficient to perform the task being

investigated.

Consequent. The conclusion (action) of a rule/logical statement.

Contradiction. Condition where the antecedents of two rules are the same while the

consequence are different.

Control. A procedure, explicit or implicit, that determines the overall order of problem-
solving activities in a system.

Data-driven. An inference method which starts with all available data or evidence

obtained or determined by the system and from this information deduces which

hypothesis may or may not be true. Also called forward chaining.

Declarative knowledge. Descriptive or factual knowledge.

Declarative representation. Descriptive statements of static knowledge - facts about
objects, events, and their relations. In contrast, procedural representation is executable
statements of knowledge -- knowledge captured in procedures.

Deductive reasoning. Reasoning from the general to the specific.

Disk 000008 73
File: lif/wo/nasa/fin3.doc

NGT4-52401

Deep knowledge. Basic knowledge coming from first principles or physical laws of the
domain.

Defuzzification. Process of converting a fuzzy value into a crisp value.

Degree of membership. The likelihood, expressed as a number from 0 to 1, that a
particular object belongs in a fuzzy set.

Depth-first search. A search technique that explores each branch of a Search space

to its full vertical depth, then proceeds alone the left or right branches at that depth.
Each branch is searched for a solution; in none is found, a new vertical branch is
searched using the same rule of search.

Domain. The problem area. Example: medical diagnostics.

Domain-specific knowledge. Knowledge about the problem area.

Encapsulation. The hiding of data and procedures within an object.

Evaluation function. Procedure used to determine the value of a proposed path
through a pf'oblem space.

Exhaustive search. A search technique where every possible path through a problem
space is examined.

Existential quantifier. For some variable X there exists some object that could
instantiate the variable.

Fact. A declarative assertion or statement that has the property of being either true or
false.

Fault tree. A tree diagram containing an ordered representation of faults that may be
found in a system.

Fire. To activate the conclusion of a rule if the premises are true.

First principles. Basic theory of the domain used to solve the problem rather than
rules of thumb.

Forward Chaining. inference strategy where conclusions are drawn by first looking at
the facts or data of the problem. Also known as data-driven.

Frames. A frame is a data structure or knowledge representation method that

associates an object with a collection of features. Each feature or attribute is stored in
a slot with a corresponding attribute value, or method for acquiring the value. Frames
include declarative and procedural information in predefined internal relations. Action
frame are frames that describe action. State-change frames are frames that contain an

object slot that is filled with an application-specific object or quantity.

Disk 000008 74
File: lif/wo/nasa/fin3.doc

NGT4-52401

Frame-based system. A program that processes problem-specific information
contained in the working memory with a set of frames contained in the knowledge
base, using an inference engine to infer new information.

Fuzzy logic. A branch of logic that uses degrees of membership in sets rather than a
strict true/false membership.

Fuzzy reasoning. Method of working with inexact information. Works with subjective
or poorly understood concepts to determine an adequate solution.

Fuzzy set. Degree of membership distribution for membership of some object in a
linguistic variable set.

Goal. A hypothesis to prove. A node in a search space containing a solution.

Goal driven. An inference technique that begins with a goal or hypothesis and works
backward through the rules in an .attempt to prove the goal. Also called backward
chaining.

Heuristic. Knowledge, often expressed as a rule of thumb, that guides the search

process.

Hypothesis. A statement that is subject to verification or proof. A goal in a goal-driven
system.

Induction. Inducing rules from knowledge contained in a set.

Inductive reasoning. Reasoning from the specific to the general.

Inference. The process of deriving new information from known information.

Inference engine. Processor that matches the facts contained in the working memory
and in the domain knowledge contained in the knowledge base, to draw conclusions

about the problem.

Inference network. Graphical representation of the system's rules with the

antecedents and consequences of the rules drawn as nodes and their supporting
relationships drawn as links.

Inheritance. Process by which the characteristics of a parent are assumed by its child.

Instance. A specific object from a class of objects.

Intelligence. The ability to acquire and apply knowledge to solve a problem.

Interpreter. The inference engine of a knowledge-based system.

Knowledge. A collection of facts, rules, and concepts used to reason with.

Disk 000008 75
File: lif/wo/nasa/fin3.doc

NGT4-52401

Knowledge acquisition. The process of acquiring, organizing and studying
knowledge.

Knowledge base. Part of the system that contains the domain knowledge.

Knowledge-based system. Systems whose performance depends on encoded
knowledge.

Knowledge elicitation. The process of acquiring knowledge from a domain expert to
enter into the knowledge base.

Knowledge representation. The method used to encodeknowledge in a system's "
knowledge base.

Learning. The process of gaining knowledge and understanding through education or
experience.

Learning control system. A system that has the ability to improve its performance in

the future, based on experiential information it has gained in the past, through closed-
loop interactions with the plant and its environment.

Logic. A system of reasoning based on the study of propositions and their analysis in
making deductions.

Logic-based system. A system employing formal logic as its primary representation.

Membership function. A formula used to determine the degree of membership of
some object in some fuzzy set.

Meta-knowledge. Knowledge in a system that explains how the system is controlled of
reasons. Knowledge about knowledge.

Meta-rule. A rule that describes how to control the problem-solving process.

Model-based reasoning. A method of reasoning that draws conclusions about the
state of a modeled system exposed to a set of simulated data.

Modus ponens. A rule of logic that assets that if we know A is true and A implies B,
then we can assume B is true.

Monotonic reasoning. Method of reasoning that assumes once a fact is asserted it
cannot be altered during the course of the reasoning.

Objective function. For a control system to improve its performance, its learning
system must operate in context of the objectives of the system. Attainment of these
objectives is based on system performance feedback which characterizes the

appropriateness of the systems behavior.

Disk 000008 76
File: lif/wo/nasa/fin3.doc

NGT4-52401

Polymorphism. A characteristic of object-oriented programming or frame-based
systems in which a given message may be interpreted and acted upon differently
between objects or frames.

Predicate. A statement about the subject of a proposition.

Predicate calculus. A programming language or logic system where statements about
objects and their relationships are made. Each element in the predicate calculus is an
object and the statements are called predicated. It is an extension of propositional
calculus.

Premise. A statement in the IF part of the rule that must be satisfied before the rule's
conclusion is accepted.

Probability. A number representing the likelihood of a given event occurring.

Problem space. A tree or graph c:ontaining nodes and branches used for searching for

a solution to a given problem. The nodes represent possible problem states and the
branches possible paths between states.

Procedure. A well structured way of performing a given task.

Procedural representation. Procedural statement when executed derive knowledge.
In contrast, declarative representation is descriptive statements of static knowledge.

Proposition. A declarative assertion or statement that has the property of being true or
false.

Propositional calculus. Logical system for reasoning. Conclusions are obtained from
a series of statements according to the processing of rules.

Pruning. Reducing the alternatives in a problem space during search when it appears
that continual search in the pruned area will be fruitless.

Qualitative reasoning. A way to describe phenomena in terms of causal,
compositional, or subtypical relationships among objects or events.

Reasoning. The process of working with knowledge, facts and problem-solving
methods to draw conclusions or inferences.

Resolution. Inference strategy used in logical systems to determine the truth of an
assertion.

Rule. A method of representing knowledge consisting of premises and a conclusion.

Rule-based system. A computer program that processes problem-specific information
contained in the working memory with a set of rules contained in the knowledge base,
using an inference engine to infer new information.

DiskOOOOO8 77
File: lif/wo/nasa/fin3.doc

NGT4-52401

Rule of thumb. A rule based on good judgment, gained from experience rather than
first principles.

Semantic network. A method of knowledge representation using graphs made up of
nodes and arcs, where the nodes represent objects and the arcs represent the
relationship between the objects.

Tactical. To arrange, position, or maneuver forces in contact, or near contact, with the
enemy so as to achieve an objective or objectives in battle; near-term solution.

Tactical Procedures. Procedures of maneuvering military forces in action. For military
aircraft, procedures that the pilot executes either defensively or offensively.

Taxonomy. Classification of objects that are alike.

Temporal reasoning. Reasoning about problem states as they evolve over time.

Threshold. A numeric that must be exceeded before some action is taken.

Unification.

clause.
A rule of inference in logic that is used to unify two formulas to produce a

Universal quantifier. A statement that indicates that a statement is true for all values

of a problem.

Waypoint. A reference point between the point of departure and the destination,
particularly a point on a course line the coordinates of which are defined in relation to
an electronic aid to navigation.

Wingman. A pilot and his aircraft, who flies at the side and to the rear of the leader

aircraft, commonly in a two-plane or three-plane formation.

Disk 000008 78
File: lif/wo/nasa/fin3.doc

NGT4-52401

,: _. Index

A

agent-based architecture, 12

Aircraft Flight Control, 2, I0, 39, 66

anal._lical algoritluns, 9, 39

artificial intelligence, 5, 8, 9, 34, 36, 52

Associative networks, 20, 68

Automatic Flight Platudng, 2, 9,39

B

backward chaining, 15, 68, 71

Bayesiml, 4, 25, 26

best-first, 19, 38, 39

blackboard, 24, 33, 36

branch and bound, 19

breadth-first, 19, 38

--Cm

Case-based reasoning, 20, 68

depth-first, 19, 38

Displays, 9, 36, 65

mD_

F

for'ward chaining, 15, 24, 69

Frame-based, 20, 70

Fuzzy Logic, 25, 27, 66

--H_

heuristic, 13, 15, 19, 35, 36, 44

hill climbing, 19

I

inference engine, 13, 14, 70, 71

--K--

kamwledge base, 13, 14, 15, 24, 33, 70, 71

L-

Logical methods, 14, 15

logic-based systems, 15, 17, 20

.M

Mission Management, 9, 34, 35

Model-based, 20, 23, 72

--N--

neural networks, 5, 6, 30, 31,37, 39, 40, 41,43, 44,

47, 48

Nettrocomputing, 2, 29, 52

--O---

Object-based,20

opportunistic reasoning, 24

pattern matching, 15, 16

Pilot Dialogue, 9, 37

Pilot hltent, 9, 36

Pilot-Vehicle haterface, 2, 9, 32

predicate logic, 15, 17

propositional logic, 15, 17

--Q--
Qualitative reasoning, 20, 23

--R m

ntle-based systems, 15

S

Situation Assessment, 2, 9, 38

System Status, 2, 10, 37, 65

mTm

Task Management, 9, 33

Temporal methods, 14, 28

mV--

V&V, 5, 46, 47, 48, 50, 52, 53, 59, 61, 62, 63, 64

Verification and Validation, 4 I, 46, 47, 49, 58, 59,

61, 63, 66

Disk 000008 • 79
File: lif/wolnasalfin3.doc

